
www.manaraa.com

www.manaraa.com

Pioneers and Their Contributions
to Software Engineering

www.manaraa.com

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

www.manaraa.com

Manfred Broy • Ernst Denert (Eds.)

Pioneers
and Their Contributions
to Software Engineering
sd&m Conference on Software Pioneers,
Bonn, June 28/29, 2001,

Original Historic Contributions

Springer

www.manaraa.com

Editors
Manfred Broy
Institut für Informatik
Technische Universität München
80290 München, Germany
broy@informatik.tu-muenchen.de

Ernst Denert
sd&mAG
software design & management
Postfach 83 08 51
81708 München, Germany

Sonderausgabe
Buch nicht im Handel erhältlich.

ISBN 978-3-540-42290-7 ISBN 978-3-642-48354-7 (eBook)
DOI 10.1007/978-3-642-48354-7

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German Copyright Law of September 9, 1965, in its current version, and permission for
use must always be obtained from Springer-Verlag. Violations are liable for prosecution under
the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member ofBertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001

The use of general descriptive names, trademarks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by the authors
Printed on acid-free paper SPIN 10844024 - 06/3142SR - 5432 1 0

www.manaraa.com

Table of Contents

Friedrich L. Bauer
K. Samelson, F.L. Bauer
Sequentielle Formeliibersetzung .. 3

Friedrich L. Bauer
Verfahren zur automatischen Verarbeitung
von kodierten Daten und Rechenmaschinen
zur Ausiibung des Verfahrens ... 31

Rudolf Bayer
R. Bayer, E. McCreight
Organization and Maintenance of Large Ordered Indexes .. 43

E.F. Codd
A Relational Model of Data for Large Shared Data Banks ... 63

Barry Boehm
Software Engineering Economics .. 101

Fred Brooks
G.H. Mealy, B.I. Witt, W.A. Clark
The Functional Structure of OS/360 .. 153

Peter Chen
The Entity Relationship Model - Toward a Unified View of Data 207

Ole-Johan Dahl
Ole-Johan Dahl, Kristen Nygaard
Class and Subclass Declarations ... 237

Tom DeMarco
Structure Analysis and System Specification .. 257

Edsger Dijkstra
Solution of a Problem in Concurrent Programming Control 291

Go To Statement Considered Harmful ... 297

Michael Fagan
Design and Code Inspections to Reduce Errors in Program Development 303

Advances in Software Inspections .. 337

www.manaraa.com

VI

Erich Gamma
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides
Design Patterns: Abstraction and Reuse of Object-Oriented Design 363

.k»hn Guttag
Abstract Data Types and the Development of Data Structures 391

C.A.R. Hoa re
An Axiomatic Basis for Computer Programming ... 421

Proof of Correctness of Data Representations .. 441

Michael Jackson
Constructive Methods of Program Design .. 455

David L. Parnas
On the Criteria to Be Used in Decomposing Systems into Modules 481

On a 'Buzzword': Hierarchical Structure ... 501

Niklaus Wirth
The Programming Language Pascal ... 517

Program Development by Stepwise Refinement ... 547

www.manaraa.com

Friedrich L. Bauer

K. Samelson and Friedrich L. Bauer
Sequentielle Formeliibersetzung

Elektronische Rechenanlagen 1, 1959
pp. 176-182

www.manaraa.com

Sequentielle Forrneliibersetzung

Sequential Formula Translation

von K. SAMELSON und F. L. BAUER

U niversita t Mainz

Elektronische Rechenanlagen 1 (1959), H.4, S. 176-182
Manuskripteingang: 9.9.1959

Die Syntax einer F ormelsprache wie ALGOL laf3t sich als
Folge von Zustandel1, beschreiben, die durch ein Keller ge
nanntes Element angezeigt werden. Die Obergange werden
gesteuert durch zulassige Zustand-Zeichen-Paare, die sich in
Form einer Obergangsmatrix da1'stellen lassen. Diese Besch1'ei
bung liefe1't gleichzeitig eine iiuf3erst einfache V01'scI11'ift ZU1'

Obersetzung der Anweisungen de1' Formelsprache in ftfaschi
nenprogramme. Lediglich Optimisierungsprozesse wie die
rekursive Adressenfortschaltung entziehen sich der sequentiellen
Behandlung.

The syntax of an algorithmic language such as ALGOL 'is
conveniently described as a sequence at states indicated by an
element called cellar. Transitions are controlled by admissable
state-symbol pairings which may be represented by a transition
matrix. This description at the same time furnishes an ex
tremely simple rule for translating statements of the algorithmic
language into machine programs. Sequential treatment, howet'e7',
is not feasible in the case of optimizing processes such as
recursive address calc'ulation.

Verwendete Zeichen
Es gelten aile Bezeichnungen von [12J, Elektronische Rechen
anlagen 1 (1959), 72. Dariiber hinaus oder abweichend sind
verwendet:

Symbol i rv I, N, 'go to' etc.
Zeichen (X rv + - X ! ()
Ergibtzeichen ~

www.manaraa.com

Adresse von z)z(
Inhalt einer Speicherzelle (cp)

mit der Adresse cp
AC Inhalt des Akkumulators
re Ende des Ausdrucks

4

'YJ Inhalt der Zahlkelleradresse
cp Adresse
cP Adressenkeller
o Leersymbol beim Keller
h Zahlerstand des Zahlkellers
H Zahlkeller
K Befehlsfolge
II Programm
s Nummer des Kellersymbols
(j Kellersymbol
E Symbolkeller

1. Einleitung, Grund und Entwicklung der Formeliibersetzung

Die schnelle Enh\icklung des Baues programmgesteuerter
Rechenanlagen in den letzten zehn J ahren hat dazu gefiihrt.
daB heute eine betriichtliche Anzahl verschiedener Automa
tentypen hergestellt wild. Alle diese Maschinentypen haben
j edoch, trotz groBer "G nterschiede in Konstruktion und
Befeblscode, zwei Charakteristika gemeinsam. die nach all
gemeiner (moglicherweise nicht vorurteilsfreier) Ansicht
technisch bedingt sind. namlich

1. den in eine eindimensionale Folge von Worten fester
Zeichenlange zerlegten Speicher (Arbeitsspeicher),

2. Das entsprechend in eine Folge fester unabhangiger Ele
mente (der Befehle) zerlegte Programm, das von der
Steuerung Befehl flir Befehl abgearbeitet wird. Dies
bedeutet, daB die einem ins Steuerwerk gelangenden
Maschinenbefehl zukommende Operation unabhangig
ist von der Befehlsvorgeschichte.

Diese beiden Merkmale stellen sich dem Benutzer der
Rechenanlage, also dem Programmhersteller, als Hinder
nisse entgegen. insofem sie verantwortlich sind fiir die be
kannte Unbequemlichkeit und Irrtumsanfalligkeit des
Programmierens in Maschinencode. Denn sie erfordern das

www.manaraa.com

5

Operieren mit Adressen und bedingen dariiber hinaus eine
voUige Atomisierung des Programms. Es ist wichtig fest
zusteUen, daB dieser Zwang unnatiirlich ist: ein Problem
irgendwelcher Art, das von einer Rechenanlage behandelt
'werden soU, entsteht in der gedanklichen Konzeption zu
nachst meist als Ablaufschema fiir ge"isse groBere Opera
tionseinheiten, die durch ihren Zweck umrissen und mehr
oder weniger vage durch die dem Problemkreis eigentiim
lichen Bezeichnungen angegeben werden. Die Ausgestal
tung des Problems fiihrt zu einer operativen Fixierung, die
in moglichst rationeller Form unter Benutzung gebrauch
licher Notation geschieht, vornehmlich unter Heranziehung
mathematischer Formeln und verbaler Erlauterungen. Eine
Atomisierung in kleinste Einzeloperationen ist unokono
misch hinsichtlich der darauf zu yenvendenden Zeit und
des erforderlichen Platzes, vor allem fiihrt sie zur Uniiber
sichtlichkeit. Die Hinzunahme der Adressen als vallig
kiinstlicher Elemente wiegt noch schwerer, sie erfordert
umfangreiche Buchfiihrung und iiberdies in rekursiven
Prozessen Adressenberechnungen, die sich der eigentlichen
Aufgabe tiberlagern. Die Verhaltnisse werden geradezu
paradox bei gewissen Grundaufgaben der Numerischen
l\iathematik: ein generell brauchbares Programm zur
Lasung eines linearen Gleichungssystems enthalt etwa
hundert einzelne Befehle, unter denen ein einziger Addi
tions- und ein einziger Multiplikationsbefehl der eigentli
chen Aufgabe dienen. Insbesondere die mit der Einfiihrung
der Adressen verbundenen Arbeitsgange sind weitgehend
routinemaBiger Natur, und man hat daher schon friihzeitig
versucht, sie wenigstens teilweise dem Rechenautomaten
selbst zuzuschieben, der dabei als reiner Codeumsetzer
arbeitet [IJ, [8J, [9J.
Gewisse Erleichterungen verschaffte man sich ferner durch
den Gebrauch vorgefertigter Bibliotheksprogramme fiir
standardisierte Operationseinheiten, die, mit Codeworten
bezeichnet, ebenfalls vom Rechenautomaten direkt aufge
rufen, d. h. in den Ablauf eingeordnet werden. Derart auf
gebaute Programmierungssysteme waren ab 1954 in allge
meinem Gebrauch, wobei das Programm, das die Routine
arbeiten der Programmierung ("automatische Program
mierungCl

) erledigte, als Compiler bezeichnet wurde [10J.

www.manaraa.com

6

DaB man sich bei numerischen Aufgaben eine effektive
Losung des Problems der Programmierung erst erhoffen
kann, wenn man bei der automatischen Programmferti
gung von den in konventioneller Schreibweise geschriebe
nen Formeln ausgeht und aIle weiteren Phasen dem Auto
mat en iiberHiBt, hat schon 1951 Rutishause1' [4] erkannt.
Sein Yen\irklichungsvorschlag [5] so\\ie die daran ankniip
fende _\.rbeit von Bohm [14] blieb jedoch unbeachtet, und
erst 1955 wurden mit PACT [3] und FORTRAN [2] die
erst en Programmierungssysteme mit Formeliibersetzungs
charakter aufgebaut, ohne daB jedoch etwas iiber die dabei
venyendeten ~iethoden publiziert worden ware. Etwa
gleichzeitig begannen in Kenntnis der Rutishauserschen
Ergebnisse ahnliche Uberlegungen am Rechenzentrum der
TH :\Iiinchen, wobei die Entwicklung solcher Uberset
zungsmethoden im Vordergrund stand, die auch fiir Anla
gen von wesentlich geringerem Umfang und Leistungsfa
higkeit als etwa der IBM 704 anwendbar sein sollten. Zu
dies em Zwecke wurde, auf unabhangigen Yorarbeiten basie
rend (6], {13], eine sequentielle tJbersetzungstechnik ent
wickelt. Die Arbeiten wurden seit 1957 im Rahmen der
heutigen Arbeitsgruppe Ziirich-Miinchen-Mainz-Darm
stadt (Z:\DID) fortgesetzt.
Inzwischen hatte sich jedoch eine prinzipielle Verschiebung
der Standpunkte angebahnt: die herkommlichen Program
mierungssysteme waren noch yom Maschinencode als dem
Ziel der Ubersetzung her aufgebaut, und die Ubersetzung
selbst war schrittweise aus einer tJbertragung der bisher
von :\Ienschen geleisteten Routinearbeit auf die Rechen
anlage entstanden, wobei die Sprache des j eweiligen Pro
grammierungssystems von der Struktur der Rechenanlage
her immer weniger bestimmt war. l\Iit der Beherrschung
der Technik des tJbersetzungsvorganges gewann man nun
auch Freiheit in der Wahl der Programmierungssprache,
und die Aufstellung einer moglichst bequem handzuha
benden, iibersichtlichen, selbstverstandlichen Sprache trat
als Aufgabe hervor, die gelost werden muBte, bevor die
Cbersetzer selbst programmiert werden konnten. Insbe
sondere entstand die verlockende Moglichkeit, fiir verschie
dene Rechenanlagen, zunachst innerhalb der Z:\IMD
Gruppe, dieselbe Programmierungssprache zu verwenden.

www.manaraa.com

7

Die Entwicklung fUhrte 1958 zum V orschlag einer algo
rithmischen Formelsprache (ALGOL) durch ein gemein
sames ACM-GAMM-Kommittee [11], [12]. In der Zwischen
zeit wurde, nunmehr auf der Basis von ALGOL, die Struk
tur des Formelubersetzers der Z~n\ID-Gruppe einheitlich
festgelegt und mit der Codierung fur die Rechenanlagen der
beteiligten Institute (ERMETH, PERM, Z 22, SIEMENS)
sowie fur die Rechenanlagen einiger befreundeter Institute
in Deutschland, USA, Osterreich und Diinemark nach dies em
ALCOR (ALGOL Converter) genannten System begonnen.

Da somit dieses Projekt seiner Yollendung entgegengeht,
erscheint es an der Zeit, einen tberblick uber die ihm zu
grunde liegenden Prinzipien der sequentiellen t'bersetzung
zu geben, die sowohl von dem urspriinglichen Rutishauser
schen Vorschlag [5J als auch von den kurzlich veroffent
lichten :;\Iethoden des FORTR.-\N-Systems [7J wesentlich
abweichen1). AusfUhrliche Strukturpliine, die das ganze
Formelubersetzungsprogramm in detaillierter Form ohne
Bezugnahme auf eine spezielle Maschine beschreiben, wur
den im Institut fUr Angewandte Mathematik der Univer
sitat ~Iainz in reproduktionsfiihige Form gebracht; sie
bilden die Grundlage der oben erwiihnten Zusammenarbeit
der ALCOR-Familie.

2. Sequentielle U'bersetzung und das Kellerungsprinzip

Die in einer Formelsprache wie ALGOL niedergeschriebe
nen Anweisungen sind eine Folge von Symbolen, die sich
ihrerseits aus einem oder mehreren Charakteren zusammen
setzen. Da der Aufbau von Symbolen aus Charakteren je
doch trivial (es handelt sich stets urn ltickenlose, eindeutig
abgegrenzte Folgen) und bis zu einem gewissen Grade von
technischen Gegebenheiten wie dem verwendeten Schreib
gerat abhiingig ist, werden wir im folgenden den Unter
schied zwischen Symbolen und Charakteren unterdriicken
und jedes Symbol X als Einheit betrachten. Dies gilt ins
besondere fur Identifier I, Zahlen N und verbal definierte
Begrenzer wie 'go to', 'if' usw.

1) Einzelne Zuge des Systems finden sich bereits in der erwahnten Arbeit von
736nm l141, der jedoch starke Einschriinkungen hinsichtlich der zullissigen Notation
macht.

www.manaraa.com

8

Die Folge von Symbolen X des Formelprogramms stellt
nun (mit der tiblichen Interpretation der Symbole) eine
_-\rbeitsvorschrift dar. Dabei ist es jedoch nicht maglich,
die Symbole in der angegebenen Reihenfolge in orthodoxe
:\Iaschinenoperationen zu tibersetzen. Yielmehr erzwingen
bereits bestimmte arithmetische Symbole, die Klammem 0,
und Yorrangregeln (x vor +) eine yon der Symbolan
ordnung abweichende Reihenfolge der Operationen. So
heiBt a X b + ex d: multipliziere a mit b, multipliziere emit
d, addiere die Produkte, wahrend die sequentielle Aus
'Wenung ergeben wtirde: multipliziere a mit b, addiere dazu
c und multipliziere das Resultat mit d.
Es ist also bei der Abarbeitung des Formelprogramms stan
dig nonvendig, gelesene Symbole als nicht auswertbar zu
tibergehen und in einem spateren, von der weiteren Sym
bolfolge abhangigen Zeitpunkt wiederzufinden und auszu
werten. Rutishauser hat mit dem "Klammergebirge" die
grundsatzliche Lasung angegeben. Die von ihm vorge
schlagene Ausftihrung, durch Vorwans- und Rlickwarts
lesen die ausflihrbare Operation einzukreisen, ist aber un
bequem und (unnotig) zeitraubend. Daran andert sich
auch nicht viel, wenn man Rutisha'Users ~Iethode dahin
gehend variiert, daB man bereits lokale Gipfel abarbeitet.
Das Problem, die beim ersten Erscheinen als nicht auswert
bar tibergangene Information im richtigen Augenblick
wieder greifbar zu haben, laBt sich aber mit Hilfe eines als
Kellerung bezeichneten Prinzips weitgehend vereinfa
chen, das immer anwendbar ist, wenn die Struktur der
Sy-m.bolfolge klammerartigen Charak-ter hat. Das solI
heiBen, daB zwei verschiedene Paare A, A' und B, B'
zusammengehoriger Elemente sich nur umfassen, aber
nicht gegenseitig trennen konnen, daB also nur Anordnun
gen ABB'A' und nicht ABA'B' vorkommen.
Das Prinzip besagt: Man setze aIle nicht sofort auswert
baren Informationen in der Reihenfolge des Einlaufens in
einem besonderen Speicher, dem "Symbolkeller", ab, in
dem jeweils nur das zuletzt abgesetzte, im obersten Ge
schoB befindliche Element interessiert und damit unmittel
bar zuganglich zu sein braucht. J edes neu gelesene Symbol
wird mit dem obersten Kellersymbol verglichen. Die beiden
Symbole in Konjunktion legen fest, ob das Kellersymbol

www.manaraa.com

9

in eine Operation umgesetzt werden kann, worauf es aus
dem Keller entfernt wird. J e nach den Umstanden wird
der Yergleich mit dem nunmehr obersten Symbol des
Kellers wiederholt und schlieBlich gegebenenfalls ein neues
Zustandssymbol im Keller abgesetzt.
In der Sprechweise der Theorie der Automaten kann das
Prinzip so formulierl werden: Durch die gesamte Besetzung
des Kellers wird ein Zustand (des t"bersetzungsvorgangs)
definiert, der effektiv in j edem Augenblick nur von dem ober
sten Kellerzeichen abhangt, und neu gelesene Information
plus Zustand bestimmen die Aktionen des Ubersetzers, die
aus der Abgabe von Zeichen, namlich von Operationsan
weisungen fur das erzeugte Programm und der Festlegung
eines neuen Zustands bestehen. Das \Vesentliche ist aber
die durch die Besetzung des Kellers induzierte latente
Z ustandsstruktur.

3. Auswertung einfacher arithmetischer Ausdriicke

Den "vichtigsten Fall der Symbolfolgen mit Klammerstruk
tur stellen die arithmetischen Ausdrticke dar, deren Be
handlung wir daher als Beispiel ausftihrlich besprechen
wollen. U m aber den prinzipiellen Sachverhalt nicht mit
relativ unwichtigen Details zu belasten, werden wir einige
Yereinfachungen vornehmen.
Diese betreffen einmal die zulassigen Symbole. Wir werden
Funktionen I (P, ... , P) und indiziene Variable I [E, ... ,E]
vorlaufig ausschlieBen und die Additionssymbole ± nur als
zweistellige Operation (a ± b) und nicht als einstellige (± a)
zulassen.
"V\T eiter werden wir zur Erlauterung hinsichtlich der Re
chengroBen selbst untersteIlen, daB dem Rechenwerk der
Maschine, fUr die das Programm hergestellt werden soIl,
ein Schnellspeicher begrenzter Kapazitat zur Verfiigung
steht, dessen Zugriffszeit vernachlassigbar ist gegenuber
der Zugriffszeit des Arbeitsspeichers, so daB fur alle Zahlen.
die zur Verarbeitung dem Rechenwerk zur Verfiigung ge
stellt werden sollen, ein vorubergehendes Absetzen im
Schnellspeicher keine Yerzogerung des Ablaufs des Resul
tatprogramms bedeutet.
Dieser Schnellspeicher habe nun dieselbe Kellerstruktur
wie der Symbolkeller, d. h., seine Platze werden sukzessive

www.manaraa.com

10

belegt, und die jeweils zuletzt abgespeicherte (gekellerte)
Zahl ist als erste abrufbar. Der Speicher werde deshalb als
Zahlkeller H bezeichnet.
J eder unter den gemachten Voraussetzungen in einem Aus
druck auftretende Identifier stellt eine Variable dar, d. h.
den Decknamen fiir eine Zahl, und ist somit eine symbo
lische Adresse, die von dem Ubersetzer in irgendeiner Weise
auf eine echte Speicheradresse abgebildet wird, wie dies
schon von allen mit symbolischen Adressen arbeitenden
Compilem getan wird 2). Zahlen N sind, gegebenenfalls
nach Konvertierung, in Zellen abzusetzen und ebenfalls
durch Adressen zu ersetzen, so daB wir sie weiterhin auBer
Betracht lassen konnen.
Die Auswertung eines arithmetischen Ausdrucks mit Hille
des Kellerungsprinzips geht nun in folgender 'Veise vor
sich:
a) J eder auftretende Identifier I veranlaBt die Uberfiihrung
des Inhalts der entsprechenden Speicherzelle in den jeweils
obersten Platz des Zahlkellers H. Das Wort "veranlaBtlt
bedeutet hier, daB der t~ersetzer die entsprechenden Be
fehle an den bereits aufgebauten Teil des zu erzeugenden
Maschinenprogramms anfiigt. Ein im Ubersetzer enthal
tener Zahler h hat den jew-eils obersten Platz des Zahlkellers
anzuzeigen und muB daher gleichzeitig eine Eins aufzahlen.
Bezeichnen wir den Speicher fiir das erzeugte Programm
mit II, die Inhalte der Platze des Zahlkellers H mit 1]1&'

wobei der Index h die ZablgroBe darstellt, und die Maschi
nenbefehlsfolge I ~ 1]", die die Uberfiihrung in den Zahl
keller darstellt, mit K1 , so sind die vom Ubersetzer auszu
fiihrenden Operationen:

I: h + 1 ~ h; K1 ~II; lies X

'lies X' bedeutet hier, daB das nachste Zeichen Z des Aus
drucks zu lesen ist.
b) AIle iibrigen Symbole (x, das sind +, -, X, I, (,), wer
den beim Einlaufen mit dem jeweils obersten, als (18 bezeich
net en Symbol des Symbolkellers verglichen, der im Anfangs-

I) Die einfachste Moglichkeit ware etwa, die Zahl der zuHissigen Identifier soweit
zu beschriinken, daB jedem Identifier ein fester oder wenigstens relativ zu dem er
zeugten Programm fester Speicherplatz zugewiesen wird.

www.manaraa.com

11

zustand das Leersymbol 0 enthalt. J edes aus einem KeIIer
symbol 0'8 und einem Formelzeichen IX bestehende Paar
veranlaBt eine bestimmte Folge von Operationen des Uber
setzers entsprechend der folgenden Liste:

IIX I
.-

as

{O IX 1 ~s; IX~as; lies 70;

+- +-

XI XI
K(J~II; IX~as; h-1 =::f}/z; lies7o;

(+-X/
, XI s + 1 ~s; IX~as; lies 70; ,-
+-xl)

() s-l~s; lies 70;

XI -L. _

h -1 =::f} h' repetiere I

K(J~II; s-l~s;
+-X/)re ' mlt~;

Die vom tJbersetzer erzeugten und an den Programmspei
cher II abgegebenen Maschinenbefehlsfolgen Ka haben da
bei stets die folgende DreiadreBform, wobei 0' eines der vier
Operationssymbole + - X / darsteIIt:

Ka: 'fJk-lO' 'fJk =9 'fJk-l •

Es werden also die jeweiIs beiden obersten Elemente des
Zahlkellers 'fJk-l und 'fJk d urch die mit a bezeichnete Opera
tion verkniipft und das Resultat als nunmehr oberstes
Element 1Jk-l an den ZahIkeIIer zurlickgegeben. Mit der
Abgabe dieser Befehlsfolge muB daher auch der Za.hler k
des Zablkellers um Eins heruntergezahlt werden.
'Repetiere mit ex' bedeutet, daB im nachsten Schritt mit dem
gleichen Symbol 0.: und dem neuen 0' s zu arbeiten ist.
Das Ende eines Ausdrucks muB natiirlich erkennbar sein.
Es ist hier mit 're' angedeutet und 'wirkt wie eine dem An
fang als offnender Klammer zugeordnete schlieBende
Klammer.
Die Liste yon Zeichenpaaren 0'8' IX laBt sich bequem durch
eine Matri.~ darstellen, deren ZeiIen den moglichen Keller-

www.manaraa.com

12

A: (a X b + c X d)/{a - d) + b X c

E X(ex oder I) I n
leer (
(a a =9 '11
(X
(X b b =9 1'J,
(x + 1'Jl X 1'J2 =9 1'Jl
(+ c c =9 1'J2
(+ X
(+ X d d =9 1'Ja
(+ X) 1'J2 X 1'Ja =9 1'J2
(+ 7h + 1'J2 =9 1'Jl
(
leer /
/ (
I(a a =9 1'J2
I(-
1(- d d =9 1'Ja
1(-) 1]2-1'Ja=9 1'J2
I(
/ + 1]J 1'J2 =9 1'Jl
+ b b =9 '72
+ X
+X c c =9 '7a
+X re 1]2 X 1ia =9 '72
+ re 1]1 + 1]2 =9 1]1
leer

symbolen a. und deren Spalten den Formelzeichen ~ zuge
ordnet sind, so daB jedem Paar ein :Matrixelement ent
spqchts). Diese Ubergangsmatrix liefert eine vollstiindige
syntaktische und operative Beschreibung aller zu
Hissigen arithmetischen Ausdriicke.
Anfangszustand ist stets s = 0 ((J s = 0) und h = 0
(Zahlkeller leer), ein zuHissiger Endzustand, der

I} Bei Biihm [14J, der fiir eine stark eingescbrankte Formelspracbe bereits eine
matrixartige u'bersetzungsvorschrift gibt, fehlt der Symbolkeller. Biillm hat jedoch
bereits die Auswertung klammerfreier Ausdrlicke durch Vergleicb aufeinanderfol
gender Operationszeichen.

www.manaraa.com

13

einem yollstandigen Ausdruck entspricht, ist mit
s = 0 und h = 1 erreicht. Der Wert eines vollstan
digen Ausdrucks findet sich also stets auf dem ersten
Platz des Zahlkellers.
Ein einfaches Beispiel mage den Ablauf erHiutern,
wobei wir nur den j eweiligen Inhalt des Symbol
kellers I, das neu einlaufende Zeichen lund das
in II aufgebaute Programm angeben.

A: (a X b + c X d)/(a - d) + b ~ c

Wie man aus dero bigen Tabelle sieht, ist die Reihen
folge der Operationen im entstehenden Programm
durch das Formelprogramm vallig festgelegt, und
es wird kein Versuch gemacht, etwa zur Beschleunigung
Umstellungen vorzunehmen. Denn die'Vahl der Reihen
folge der Operation en muB vollig in der Hand des das
Programm enhverfenden Mathematikers liegen.]ede Um
stellung kann wegen der U ngtiltigkeit des assoziativen
Gesetzes (wenigstens beim Rechnen mit gleitendem Komma)
unerwiinschte numerische Konsequenzen haben.

4. Vollstiindige arithmetische Ausdriicke

'Vir haben nun zu diskutieren, wie das oben angegebene
Schema zu variieren ist, wenn wir die angegebenen Verein
fachungen fallen lassen. Betrachten wir zunachst die Be
handlung der RechengroBen:
Das angegebene Beispiel zeigt deutlich, daB eine Anzahl
unnotiger Umspeicherungen vorgenommen wird. Tatsach
lich sind aIle Operationen I ~ TJh, iiberfliissig, und Variable
diirfen von ihrem Platz nur zur Ausfiihrung von Rechen
operationen ins Rechenwerk abgerufen werden. Wenn wir
uns, was weiterhin vorausgesetzt sein solI, auf den Fall der
EinadreBmaschine beschranken, so fallen Ergebnisse stets
im Akkumulator an. Der Zahlkeller darf nur noch dazu
dienen, solche (unbenannte) Zwischenergebnisse aufzu
nehmen, deren Abspeicherung notwendig ist, um das
Rechenwerk fiir die nachfolgenden Operationen freizu
machen. Fiir diese arbeitet er in der vorher beschriebenen
\Veise.

www.manaraa.com

14

1m ubrigen tritt aber an die Stelle des Zahlkellers ein von
dem Ubersetzer auszuwertender (Variablen- oder) Adressen
keller fP. und aIle uberfitissigen Transportoperationen sind
durch Eintragung der entsprechenden Adressen in dies em
Ke Her zu ersetzen. die durch den Ubersetzer vorgenommen
wird und die Programmerzeugung mitsteuert. Da nun auch
der Akkumulator als Zahlspeicher verwendet wird. ist es
zweckmaBig. auch ihm eine (identifizierbare) Pseudoadresse
zuzuweisen. die in den Adressenkeller eingetragen wird.
Notwendige Abspeicherungen von Zwischenresultaten er
geben sich dann daraus. daB eine offnende Klammer auf
ein arithmetisches Operationszeichen im SymbolkeIler E
stoBt. dem als oberstes Element des AdressenkeIlers die
Adresse des Akkumulators entspricht. Eine soIche Klam
mer wird impliziert auch durch ein einlaufendes X I. das
auf ein ± in E stoBt. Da zwischen dies en Symbolen ein
Identifier aufgetreten sein muB. ist in diesem FaIle auch
die zweithochste Position des AdressenkeIlers zu kontrol
lieren.
1st eine Zwischenspeicherung notwendig. so wird die Ab
speicherung des AC in den gerade obersten Platz des Zahl
kellers H veranlaBt. die Adresse des AC im AdreBkeller
durch die Adresse von 1711, ersetzt und angemerkt. daB bei
Abruf der Adresse in das erzeugte Programm der Zahl
kellerindex um Eins heruntergezahlt werden muB.

Die vom Ubersetzer in den Programmspeicher abzusetzen
den Operationen Ka erhalten jetzt im aIlgemeinen die Form

K . (rpi-I) =? AC
a' AC (J (rpf) =? AC.

Dabei ist jedoch stets zu priifen. ob eine der beiden Ope
randenadressen rp f-l' rp f den AC darstellt. In dies em Falle
fallt fur a gleich + oder X der erste Befehl aus. der zweite
erhalt die Adresse rp f oder rp i-1> die nicht den AC dar
stellt. Bei (J gleich - oder I faUt der erste Befehl weg. wenn
q; 1-1 den AC darsteIlt. 1m entgegengesetzten FaIle aber. also
q; f = AC. muB man ftir (J = - setzen:

-AC=?AC
K_: AC + (rp'-l) =? AC.

www.manaraa.com

15

wabrend man fur a gleich / sogar zuerst den AC sicherstellen
muB.

AC=*T}h
K,: (fIJI-I) =* AC

AC/1Jh =* AC

Die beiden FaIle entsprechen Formeln vom Typ a- (b + c)
bzw. a/(b + c), die sich bequemer mit Maschinen behandeln
lieBen, die "vom Speicher subtrahieren" bzw. "in den Spei
cher dividieren II konnen.
Die einstelligen Operationen + a, -b schlieBlich erIe dig en
sich begrifflich am einfachsten durch Hinzunahme eines
Leerelementes im AdressenkeIler, das anzeigt, daB der ent
sprechende Linksoperand nicht existiert.
Die Behandlung Boolescher Ausdriicke lauft ofIensichtlich
der Behandlung arithmetischer Ausdriicke parallel.
Die Hinzunahme von Funktionen und indizierten Variablen
bedeutet zunachst einmal, daB das Auftreten eines Identi
fiers unmittelbar von einer ofInenden Klammer festgestellt
werden muB, da die Kombination I(die Funktionen und die
Kombination I[die indizierten Variablen eindeutig kenn
zeichnet. Weiter, und das ist der wesentliche Punkt, stell en
beide Symbole, Funktion und indizierte Variable, einen
neuen Typ von Klammer mit besonderen Eigenschaften
dar. 'Venn wir uns hinsichtlich der indizierten Variablen
zunachst auf den Fall beschranken, daB die durch die der
Variablen zugehorige Feld-Vereinbarung (array declaration)
festgelegte Speicherabbildungsfunktion (vgl. Abschnitt 7) fUr
jedes Auftreten der Variablen vollstandig ausgewertet wird,
ist die Behandlung weitgehend einheitlich.
Zunachst ist der Reihe nach die Auswertung der auf den
einzelnen Argument- bzw. Indexpositionen stehenden Aus
driicke zu veranlassen, wobei das trennende Komma bzw.
die abschlieBende Klammer) oder] die Rolle des AbschluB
zeichens ubemimmt. Die Werte der Ausdriicke sind abzu
speichern, konsequenterweise als Zwischenergebnisse im
Zahlkeller. AnschlieBend an die Berechnung der Argumente
ist ein Sprung mit automatischer Ruckkehr zu setzen, der
in das durch die Funktions- bzw. Feld-Vereinbarung defi
nierte Programm fUhrt. Dieses endet wie ublich mit der
Abgabe des ermittelten Wertes an den Akkumulator. Fur

www.manaraa.com

16

indizierte Variable mit laufenden Indizes in Schleifen ist
eine solche Behandlung natiirlich zeitraubend und ineffek·
tiv; sie muB durch rekursive Auswertung der Speicherab
bildungsfunktion ersetzt werden. bei der innerhalb der
Schleife nur Additionen auftreten, die z. B. durch Index
register erledigt werden konnen. 'Vir kommen darauf noch
zuriick.

5. Anweisungen (statements)

Die Auswertung vollstandiger Anweisungen verUiuft nach
den gleichen Prinzipien wie die der Ausdriicke, die ja den
wesentlichsten Teil aller Anweisungen darstellen. Es muB
nur der Symbolkeller einige weitere Symbole aufnehmen
konnen.
"Vas die arithmetischen (und Booleschen) Anweisungen an
betrifft, handelt es sich hier im wesentlichen um das : = ,
das stets als erstes im Symbolkeller abgesetzt wird und
damit an Stelle des anfanglichen Leerzustands des Kellers
tritt. Ais SchluBzeichen im Informationseinlauf fungiert das
Anweisungstrennzeichen ; bzw. das 'end' der zusammen
gesetzten Anweisungen, das jew-eils erst die Setzung der
letzten arithmetischen Operationen des Ausdrucks auslost
und bei Koinzidenz mit dem : = anzeigt, daB dieses in den
abschlieBenden Speicherbefehl umgesetzt werden kann.
Die verbalen Klammern 'begin' und 'end' fUr zusammen
gesetzte Anweisungen werden naturgemaB ebenso behandelt
wie arithmetische Klammem: 'begin' wird in den Symbol
keller abgesetzt. Ein einlaufendes 'end' dient zunachst
als SchluBzeichen fiir die vorangegangene Anweisung und
lost die Veranlassung aller im Keller anstehenden Operatio
nen aus, bis es auf das erste 'begin' stoBt, das noch geloscht
wird. Damit ist die Funktion des 'end' beendet. 1st das
nachste Zeichen wieder ein 'end', so wiederholt sich der
Vorgang, bis als SchluBzeichen das Trennzeichen ; eintrifft.
das die Abarbeitung des Kellers bis zum nachsten gekellerten
'begin' auslost, das nun aber natiirlich unangetastet bleibt.
Ahnlich ist die Situation bei der einfachen Sprunganwei
sung <go to' L. Der fiihrende Begrenzer wird im Keller
abgesetzt, anschlieBend die l\IarkeL ausgewertet. Das Trenn
zeichen ; schlieBt die Auswertung ab und zeigt beim Auf-

www.manaraa.com

17

treffen auf den Begrenzer im Keller, daB die zugehorige
Operation "Sprung naeh dem dureh L bezeichneten Speieher
platz" abgesetzt werden kann.
Die Behandlung der beiden Anweisungen 'if' B und 'for'
V : = " wo I eine Liste entweder von Ausdriieken E oder
von Ausdruek-Tripeln Ei (Es) Ee darstellt, ist zunachst ahn
lich wie die der Sprunganweisung. Der Begrenzer wird im
Keller abgesetzt und die anschlieBende Zeichenfolge B bzw.
V: = I ausgewertet. Das abschlieBende Symbol ; zeigt das
Ende der Auswertung an. In beiden Fallen ist j edoch die
Funktion des Begrenzers noch nicht abgeschlossen.
1m Falle des 'if' kann zwar die Absetzung des an die Aus
sage B anschlieBenden bedingten Sprungbefehls durch das
; veranlaBt werden. J edoch ist die Sprungadresse noch un
bekannt. Sie liegt erst fest, wenn die nachste Anweisung
voll ausgewertet ist. Daher muB das 'if' als transformiertes
'if!' im Keller verbleiben, bis es auf das nachste einlaufende
Trennzeichen ; oder 'end' trifft, das das Ende der beding
ten Anweisung markiert. Erst damit liegt das Sprungziel
im erzeugten Programm fest und kann eingetragen werden,
worauf das 'if!' endgtiltig ge15seht wird.
Der Fall des 'for' ist wesentlieh komplizierter. Besteht die
Liste I in 'for' V: = I ; E (wo E die qualifizierte Anweisung
darstellt) aus Ausdriieken El bis Ek , so ist die Anweisung
unter Einftihrung einer zusatzlichen 1ndexvariablen HI
und einer indizierten Variablen V [HI] in die folgenden
Anweisungen umzusetzen:

V [1] := E 1 ; V [2] := E 2 ; ••• ; V [k] := E k ;

'for' HI : = 1 (1)k ;
'begin' V: = V [HI] ; E 'end' ;

Damit ist dieser Fall auf den der Progression zuriickge
ftihrt. Ahnlich hatie man vorzugehen, wenn die Elemente
der Liste I selbst Progressionen Ei (Es) Ee sind.
Einfacher ist in diesem Fall sieher, die Anweisungen 'for'
V: = Eig (Esg) Eeg ; E ftir jedes Listenelement getrennt
aufzuschreiben. In jedem Fall aber gentigt die Betrachtung
der einfachen Progression: 'for' V: = Ei (E s) E e ; E.
Nach Kellerung des 'for' kann der erste Teil der folgenden
Symbolkette V: = Ei wie eine normale arithmetische An-

www.manaraa.com

18

weisung betrachtet werden, da ja hierdurch der erste Wert
von V festgelegt wird. Als SchluBzeichen, das auf das 'for'
im Keller trifft, wirkt die offnende Klammer. Ihr Zusam
mentreffen mit 'for' besagt, daB sie zu ersetzen ist durch
S:=, was zusammen mit dem folgenden Es wieder als
arithmetische Anweisung ausgewertet werden kann. Die
schlieBende Klammer wirkt als SchluBzeichen und ist zu
ersetzen durch E:=, worauf wieder mit der Auswertung
von Ee fortgefahren werden kann. S und E sind dabei vom
Ubersetzer einzufiihrende Hilfsvariable fiir Schritt und
EndgroBe. Eine Vereinfachung ist moglich, wenn Es oder
ETc eine Zabl oder eine einzige Variable ist: In diesem Faile
geniigt es, wenn der Ubersetzer die Hilfsvariablen S bzw.
E durch die betreffenden GroBenbezeichnungen ersetzt').
Da in der auf das 'for' folgenden Schleife die AbschluB
bedingung von dem Vorzeichen des Wertes von Es abhangt,
muB dieses noch vor dem Eintritt in die Schleife getestet
werden. 1st E8 eine Zabl, so kann dies der Ubersetzer iiber
nehmen. In anderen Fallen muB eine Priifung der Lauf
richtung und eine entsprechende Festlegung der AbschluB
bedingung im Programm erzeugt werden, wenn man nicht
dem Ubersetzer sehr unbequeme dynamische Kontroilen
aufbiirden will.
Die Funktion des 'for' .ist mit der durch das erste Semi
kolon angezeigten Abarbeitung der Progressionsangaben
nicht ededigt. Vielmehr muB noch die SchleifenschlieBung
einschlieBlich Zahlung und Priifung veranlaBt werden.
Daher ist auch das 'for' im Keller durch das erste Semi
kolon zu transformieren zu 'forI'. Beniitzt man als Stan
dardschleife den normalerweise effektivsten Typ mit Prii
fung am SchluS und SchlieBung durch bedingten Sprung,
so ist die Absetzung der entsprechenden Operationen bis
zum Ende der auf die 'for' -Anweisung folgenden Anwei
sung zuriickzustellen. Da man aber dem Fail der leeren
Schleife vom Typ 'for' V:= 1(1)0 Rechnung tragen muS,
ist vor dem Schleifenbeginn noch ein Sprung auf die Aus
gangspriifung der Schleife zu setzen. Diesem muB noch eine

') Auf den dubiosen Fall, daB die Anweisung S:= E, in die Scbleife se1bst aufge
nommen werden muD, well etwa E, von Yabbangt (etwa 'for' V:= 1 (y) N, was die
Folge der ganzen Potenzen von 2 liefert), solI bier nicht weiter eingegangen werden.
S ist also fUr die Schleife fest und in sinnvollen Fallen ungleich Null.

www.manaraa.com

19

Marke folgen, die als Ziel fUr den SchleifenschlieBungs
sprung dient.
AnschlieBend kann die dem 'for' unterliegende einfache
und zusammengesetzte Anweisung abgearbeitet werden.
Das abschlieBende Symbol ; oder 'end' fiihrt beim Auf
treffen auf das 'forl' im Keller zur Absetzung der Schlie
Bungsbefehle:
Insgesamt ist also die 'for' -Anweisung

'for' V:= Ei (Es) Ee ; £ ;

vom "0'bersetzer wie die aufgeloste Anweisungsfolge

V:= E i ; S:= Es; E:= Ee;

..!L • _ {> falls S < 0., t' L . L . ~.
-:r • - :::;;; falls S > 0' go 0 l' , B· ~,

V:= V + S; Ll': 'if V =IF E; 'go to' LB
V:= V- S;

zu behandeln, wobei sich bei der zweiten, dritten und vier
ten Anweisung die diskutierten Vereinfachungen ergeben
konnen.
Die Prozeduranweisung schlieBlich ist als Aufruf eines
Bibliotheksprogramms von Standardform. zu behandeln,
wobei die Parameter in der im Aufruf angegebenen Reihen
folge abgesetzt werden5). Da es sich hierbei um bekannte
Techniken handelt, sind weitere Ausfiihrungen unnotig.
Die Anweisung 'return' behandelt einen einfachen Riick
sprung auf eine eingebrachte Riickkehradresse. Die An
weisung 'stop' bedeutet (unwiderrufliches) Ende des be
treffenden Programmlaufs und soIl die Maschine in einen
Zustand versetzen, in dem sie weitere Auftriige annimmt.

6. Vereinbarungen (declarations)

Von den Vereinbarungen sollen nur die Funktions-, Proze
dur- nnd Feld-Vereinbarungen kurz behandelt werden8).

Funktions- nnd Prozedur-Vereinbarungen sowie Feld-Ver-

5) Insbesondere dad angenommen werden, daB Ein- und Ausgabetatigkeiten, die
weithin von den Mascbinencharakteristika abhiingig sind, in genereller Form als
Prozeduren aufgerufen werden konnen.

-) Typ-Vereinbarungen sind in selbstverstiindlicher Weise bei der Behandlung arith
metischer (oder Boolescher) Ausdriicke zu beriicksichtigen.

www.manaraa.com

20

einbarungen (solange man sich auf jeweils vollstandige Aus
wertung der Speicherabbildungsfunktion, siehe 7., be
schriinkt) definieren jeweils Unterprogramme. Funktions
und Feld-V ereinbarungen fiihren zu statischen Programmen,
die Prozedur-Vereinbarungen dagegen zu dynamischen7).
Dem aus der Auswertung der Vereinbarung resultierenden
Unterprogramm ist also wie bei allen Cnter- bzw. Biblio
theksprogrammen ein AnschluBteil voranzustellen, der die
tJbernahme der Riickkehradresse und der Programmpara
meter durchfiihrt, im dynamischen Fall ist ein Adaptieren
zur Berechnung des benotigten Hilfsspeichers und zur
Adressierung der auf den Hilfsspeicher beziiglichen Befehle
(mit Hille eines speziellen Parameters, der den Beginn des
freien Speicbers angibt) hinzuzufiigen. Auch hierhandelt es·
sich um bekannte Techniken, auf die nicht naher eingegan
gen zu werden braucht.

7. Adressenfortschaltung bei indizierten Variablen

'Vie bereits erwahnt, fligen sich die indizierten Variablen
ohne Schwierigkeiten in den Rahmen der diskutierten Uber
setzungstechnik, solange man die Speicherabbildungsfunk
tion im Programmlauf jeweils in geschlossener Form aus
wertet. Tatsachlich ist ja etwa die GroBe a [i, kJ mit zuge
horigerFeld-Vereinbarung'array' (a[7,7 :n, mJ) als Funktion
gegeben durch

a [i, kJ := (k X n + i +) a [0,0] () .

Hier stellt die Variable)a(die Zahl dar, die die Adresse
des die Zahl a enthaltenden Speicherplatzes angibt. Die
Funktion (E) hat als Wert diejenige Zahl, die auf dem
durch den (ganzzahligen) Wert von E adressierten Speicher
platz stehts).
Fiir Variable mit Laufindex in inneren Schleifen bedeutet
eine solche Auswertung j edoch einen unertraglichen Zeit
verlust, weshalb die Adressenberechnung stets rekursiv

") Die Prozedurvereinbarung liefert auch die Moglichkeit, in ALGOL dynamische
(Bibliotbeks-) Programme zu formulleren.
a) Beide Elemente sind in ALGOL nicht enthalten, diirften im iibrigen nahezu
ausreichen, um. ALGOL in die oft diskutierte universal computer language UNCOL
zu verwandeln.

www.manaraa.com

21

vorgenommen wird, insbesondere in der innersten Rekur
sionsstufe mit Hilfe von Indexregistem. Prinzipiell ist
auch hier klar, was getan werden muE, sogar bei Zulassung
allgemeinerer Speicherabbildungen:

a[i,k]:= ()a[O,O](+P(i,k,P;)

wobei P; weitere Parameter wie n, m darstellt und Peine
beliebige Funktion ist.

Tritt nun in einer Schleife mit der Laufvariablen V die
indizierte Variable a [11 (V), 12 (V)J auf, deren Indexposi
tionen mit Funktionen 11 und 12 der Variablen V besetzt
sind, so hat man in der Abbildungsfunktion einzutragen

a Ul (V), 12 (V)] : = () a [O,OJ (+ P(fl (V), 12 (V), Pi) >
= <> a [0,0] (+ Q(V, Pi»

und die entstehende Funktion Q (V, Pi) durch eine Rekur
sion hinsichtlich V auszudrucken, mit deren Hilfe die Ab·
bildungsfunktion ohne Multiplikationen ausgewertet wer
den kann. Es muE demnach zur Adressenfortschaltung die
sukzessive Bildung des vollstandigen Differenzenschemas
von Q (V, Pi) veranlaEt werden.

In praxi bedeutet das eine ungeheure Komplikation, da
der Ubersetzer das Schema fur die Bildung beliebiger Rekur
sionen in sich tragen muE. Da auch der allgemeine Fall
auBerst selten vorkommt (ein nicht triviales Beispiel ist
jedoch die Dreieckspeicherung dreieckiger Matrizen), ist
bereits in ALGOL nur rechteckige Speicherung von Feldem,
d. h. in den Indizes lineare Abbildungsfunktion, unter
stellt. Ferner hat man bisher auch die auf Indexpositionen
zuliissigen Ausdrucke auf in dem Laufindex lineare Funk
tionenbeschrankt. In ALGOL ist eine solche Beschrankung
nicht vorgesehen, dementsprechend haben wir bei der ge
schlossenen Auswertung beliebige (auch indizierte) Index
ausdriicke zugelassen. Bei der Adressenfortschaltung be
schrii.nken wir uns jedoch ebenfaIls auf den Fall linearer
Indexausdriicke. Flir rekursive Auswertung der Speicher
abbildungsfunktionen kommen also nur indizierte Variable
der Form a [i X c1 +E/, i X c2 +E,/, ... , i X Ck + Ek '] in
Frage, wobei i der Laufindex der betreffenden Schleife sei,
die c; seien Konstante und die E/ Ausdrucke, die i nicht

www.manaraa.com

22

enthalten. Aus der oben angegebenen Speicherabbildungs
funktion (Fall k = 2) ergibt sich. wenn wir. abkiirzend
) a [i X cl + E l ' • .•.• i X cTc + Ek 1 (durch A und) a [0.0] (
durch A null ersetzen

(1) A := (Ei X Cz + E z') X n + Ei X c1 + E/ + A null
(2) A :=(cz xn+c1)x5+A

als Rekursion fiir die Adressen der durch die \Verte
i := E.(5)Ee ausgewa.h.lten Komponenten a [i X c1 + E/ •
. . . • i X cTc + ETc'] des Feldes a [.]. Der Wert ffir n ist dabei
der zugehorigen Feld-Vereinbarung zu entnehmen. der \Vert
von A null ist vom Ubersetzer aus der Speicherverteilung.
die nach Abschlu.6 der eigentlichen "Obersetzung des Formel
programms an Hand der Feld-Vereinbarungen in iiblicher
Compilertechnik auszufiihren ist. zu berechnen und dem
erzeugten Programm als Konstante einzuverleiben.

Das urspriingliche Formelprogramm laute etwa

'for'i := Ei(5)E;
... a [c1 X i + E/. Cz xi + Ez.'] ... ;

Es ist vom Ubersetzer zu behandeln wie: (5)0 voran
gesetzt)

t := E i ;

-4 := (i X Cz + E z') X n + i X C1 + E/ + A null;
delta A : = (cz X n + c1) X 5;
'go to' Lp;
L B : ••• (A) ... ;
A : = A + delta A ;
i := i + 5;
LJ): 'if'i ~ E; 'go to' LB

Das Symbol (A) ist dabei zu interpretieren als:
man rechne mit dem Inhalt der durch die Zahl A als Adresse
bezeichneten Zelle. d. h. als iibliche indirekte Adresse,
wenn man nicht diese Zahl A als Adresse in dem Rechen
befehl substituiert.

www.manaraa.com

23

Stehen Indexregister fUr die _-\dressenfortschaltung zur
Verfiigung, so ist die Sequenz abzuandern. "Vir konnen for
malauch ein Indexregister mit einerVariablenIRK (Index
register K) bezeichnen. 1st eine Variable mit IRK indiziert
(a [IRK]), so bedeutet dies, daB der Ubersetzer demjenige
erzeugten Befehl, der die dieser Variablen entsprechende
Adresse enthalt, das Merkmal fur Adressenmodifikation
durch Addition des Indexregisters K anfiigen muE.

~Iit diesen Abkiirzungen ist der oben angegebene Formel
ausschnitt vom Ubersetzer zu behandeln wie

i ; = E i ; delta A : = (cz X n + c1) X S;
A := E 2' X n +E/ +A null; IRK:= (c2 X n + c1) x: i;
'go to' L .

1)'

L B : ••• (A) [IRK] ... ;
IRK:= IRK + deltaA;
i := i + S;
L1): 'if'i < E; 'go to' LB ;

Das allgemeine Schema zeigt bereits, daB bei der Adressen
fortschaltung das Kellerungsprinzip durchbrochen wird.
Denn erst das Erscheinen der indizierten Variablen im
Inneren der Schleife zeigt dem Ubersetzer, daB er in den
bereits erzeugten Teil des Programms noch Befehlsserien
einzuschieben hat. Er muB also zwei Programmteile, die
Befehle der Schleife selbst und den fUr die Fortschaltungen
notwendigen Vorbereitungsteil, gleichzeitig nebeneinander
aufbauen und kann sie erst nach AbschluB der Schleife
aneinanderfiigen, wobei die Reihenfolge Geschmackssache
ist. solange dem fiir das erzeugte Programm erforderlichen
zeitlichen Ablauf Rechnung getragen wird.

Abgesehen davon liegt hier nun ein Fall vor, in dem die
Symbolfolge nicht mehr sequentiell mit einfacher Kellerung
abgearbeitet werden kann: Die auf den Indexpositionen
stehenden Ausdriicke mtissen in mehrere parallele Ztige
auseinandergefahren werden, da neben der vollstandigen
Auswertung zum Aufbau der Speicherabbildungsfunktion,
die den Anfangswert von A bZ\v. A und IRK festlegt, noch
zur Festlegung des Programms fUr die Berechnung von
delta A vom Ubersetzer die Koeffizienten der Laufvariablen

www.manaraa.com

24

i auf allen Indexpositionen zu sammeln und mit den rich
tigen Faktoren, die aus der Feld-Vereinbarung stammen,
zu versehen sind.
~Iit der Fortschaltung verknupft sind eine Reihe von not
wendigen Kontrollen und Vergleicben, die fur den Uber
setzer stets das Anlegen und Durchsehen von speziellen
Listen bedeuten. Zunachst ist, als Voraussetzung fur die
Fortschaltung, vom Ubersetzer die Linearitat der Index
ausdriicke festzustellen. Vor allem muB sichergestellt sein,
daB nicht etwa die Koef:fizienten eines in der Laufvariablen
formal linearen Indexausdrucks Variable entbalten, die in
der Schleife umgerechnet werden und damit von den Wer
ten der Laufvariablen abhangen. Das bedeutet aber, daB
alle in der betreffenden Schleife als Rechenergebnisse links
von dem Svm.bol : = in arithmetischen Anweisungen auf
tretenden ,,\-ariablen vom Ubersetzer notiert werden mus
sen, um gegebenenfalls mit einer in einem Indexausdruck
auftretenden Variablen, die nicht als Laufvariable eines
'for'-Symbols de:finiert ist, verglichen werden zu konnen.
Diese Kontrolle ist unumganglich, da nichtlineare Indizes
zugelassen sind. aber nicht fortgeschaltet werden konnen.

Zur richtigen Behandlung der Indexausdriicke muB der
Ubersetzer in j edem Augenblick die Laufvariable der gerade
abgearbeiteten Schleife greifbar haben. Dies wird erreicht
mit Hille eines neuen Kellers, des Schleifenkellers, in dem
j edes Laufvariablensymbol beim Auftreten nach dem zuge
horigen 'for' abgesetzt wird und aus dem es erst beim
Schleifenende, das durch das Zusammentreffen des End
zeichens ; oder end mit dem transformierten 'forI' ange
zeigt wird, wieder entfemt wird.
U m das erzeugte Programm so kurz und damit so effektiv
wie moglich zu machen, muE der Ubersetzer weiterhin
eine Reihe von Identitatspriifungen vomehmen. Zunachst
ist, beim Auftreten mehrerer indizierter Variablen in einer
Schleife, die mogliche Identitat der zugehorigen Fortschalt
graBen delta A festzustellen. Zwar fuhren soIche Identi
taten, solange ohne Indexregister gearbeitet wird, nur zur
Verkurzung des Vorbereitungsteils der Schleife und zur
Einsparung von Hillsspeicherzellen. Beim Einsatz von
Indexregistern aber gewinnt man mehr. Denn da mit den

www.manaraa.com

25

delta A auch die Anfangseinstellungen der IRK identisch
sind, kann der Ubersetzer alle identischen Fortschaltungen
mit einem Indexregister ausftihren lassen, und man spart
sowohl Fortschaltungsrechnungen in der Schleife als auch
Indexregister ein. In den meisten vorkommenden Fallen
erscheint die Laufvariable i einer Schleife nur in Index
ausdriick:en. AuBerdem (und eben aus diesem Grunde) ver
ftigen die meisten Maschinen mit Indexregistem tiber einen
speziellen bedingten Sprung, der vom Inhalt eines Index
registers und evtl. einer anderen Speicherzelle abhangig ist.
Um dies auszuniitzen, muB der Ubersetzer kontrollieren,
ob die Laufvariablen auBerhalb von Indexausdriicken vor
kommt. 1st dies nicht der Fall, dann kann die laufende Be
rechnung der Laufvariablen ganz entfallen und durch die
Indexregisterfortschaltung ersetzt werden. Entsprechend
ist die SchluBbedingung auf das Indexregister umzustellen,
weshalb im Vorbereitungsteil der Endwert Evon i mit
dem Koeffizienten von S in delta A zu multiplizieren ist.

Unser obiges Beispiel hat der "Obersetzer dann zu behandeln
wie:

delta A
IRK
E

:= &2 X n + &1;

:= (Ei) X delta A;
: = E X delta A ;

delta A := S X delta A;
A := E 2' X n + E/ + A null;
'go to' L'P;
LB : ••• (A) [IRK] ... (A') [IRK] ... ;
IRK := IRK + delta A;
L • 'if'IRK s: E' 'go to' L . 'P' -, B'

Die l\Ioglichkeiten zur Vereinfachung von Schleifen sind
damit natiirlich noch nicht erschopft. Jedoch ist auf das
Wesentliche hingewiesen und die Diskussion soIl damit ab
geschlossen werden.
Wie bereits erwahnt, ist die Adressenfortschaltung von
besonderer Bedeutung in den innersten Schleifen eines
Programms, und an diesen Stellen sollten die Indexregister
in erster Linie zur Fortschaltung eingesetzt werden. Die

www.manaraa.com

26

Tatsache, daB eine Schieife innerste Schleife ist, ist jedoch
erst am Schleifenende festzustellen. Der Ubersetzer muB
daher die endgiiltige Absetzung der entsprechenden Be
fehie bis zum Erscheinen des die Schleife abschlieBenden
Trennzeichens verschieben. 'Veiter ist im Schleifenkeller
eine Anmerkung "nicht innerste Schleife" bei jedem gekel
lerten Laufindex, flir den dies zutrifit, notwendig.

Schlufibemerkung

Die vorangegangene Darstellung zeigt, daB die U msetzung
des Formelprogramms in Maschinenoperationen durch den
Ubersetzer mit Ausnahme der Behandlung der Adressen
fortschaltung ziigig ohne Abspeicherung des Formelpro
gramms, also als reiner EingabeprozeB, durchgefiihrt wer
den kann. Denn die Fernzusammenhange im Programm
beschranken sich auf Adressen, die aus wahrend des Ein
leseprozesses anzulegenden Listen entnommen werden
konnen. Dementsprechend ist es auch moglich, die Um
setzungsmethode zur sofortigen interpretativen Ausfiih
rung der im Formelprogramm angegebenen Operationen,
auch mit Hilfe verdrahteter Schaltungen, anzuwenden.
Eine Adressenfortschaltung macht allerdings hierbei auBer
ordentliche Schwierigkeiten.

Literatur

[1] H. Goldstine and]. von Xeumann: Planning and Coding
for an Electronic Computing Instrument. Institute for
Advanced Study, Princeton, X. J., 1947/48.

[2J International Business Machines Corp., FORTRAN Manual.

[3J W. S. Melahn: A description of a cooperative venture in
the production of an automatic coding system, J ourn.
Assoc. Compo Mach. 3 (1956), S.266-271.

[4J H. Rutishauser: Ober automatische Rechenplanfertigung
bei programmgesteuerten Rechenanlagen, Z. Angew. Math.
Mech. 31 (1951), 255.

[5] H. Ruthisauser: Automatische Rechenplanfertigung bei
programmgesteuerten Rechenmaschinen, Mitt. Inst. f. An
gew. Math. der ETH Zurich, Nr. 3, (1952).

www.manaraa.com

27

[6] K. Samelson: Probleme der Programmierungstechnik.
Intern. Kolloquium uber Probleme der Rechentechnik,
Dresden 1955, S.61-68.

[7] P. B. Sheridan: The arithmetic translator-compiler of the
IBl! Fortran automatic coding s)-stem, Com. ACM Bd. 2,
(1959) 2, S. 9-21.

[8] JI. V. Wilkes; D.]. Wheeler; S. Gill: The preparation of
programmes for an electronic digital computer (Cambridge,
lIass., 1951).

[9] 1.lf. V. Wilkes: The Use of a Floating Address System for
Orders in an Automatic Digital Camputer. Proc. Cambridge
Philos. Soc. 49, (1953) 84-89.

[10] Charles W. Adams and]. H. La"ning fr.: The M. 1. T.
System of Automatic Coding; Comprehensive, Summer
Session and Algebraic, in: Symposium on Automatic Pro
gramming for Digital Computers, "("S Department of Com
merce.

[11] AClI Committee on Programming Languages and GAMM
Committee on Programming: Report on the Algorithmic
Language ALGOL, edited by A.]. Perlis and K. Samelson.
Num. Math. 1 (1959), S.41-60.

[12] H. Zemanek: Die algorithmische Formelsprache ALGOL.
Elektron. Rechenanl. 1 (1959), S.72-79 und S. 140-143.

[13] F. L. Bauer: The Formula Controlled Logical Computer
Stanislaus, erscheint in Math. Tabl. Aids Compo

[14] C. Bohm: Calculatrices digitales. On dechifirage de formu
les logico-mathematiques par la machine meme dans la
conception du programme (Dissertation, Zurich 1952)
Annali dei Mat:ematica pura ed applicata. Ser. 4, 37 (1954).
S.5--47.

www.manaraa.com

Friedrich 1. Bauer
Ausschnitt aus der Patentschrift:

Verfahren zur automatischen Verarbeitung
von kodierten Daten und Rechenmaschinen

zur Ausiibung des Verfahrens

Auslegeschrift 1 094 019
Anmeldetag: 30. Miirz 1957

www.manaraa.com

nUNOt:SICI::I'UIII.11.: IJt:UTS C IILA:"I1I KL 42 m 14-

DEUTSCllES ~ PATENTA"T
II<T T. ~1.. G 06 r

AUSLEGESCHRIFT 1 09 L1 019

1
Die. Er6ndung betrillt ein Betriebsvc:rlahren lur

;lutuIII;ltiscite mt'Cit;lllische. d"ktrische oder elektronische
R.'Ch"lIl11aschinl"n und bezieitt sieh in5~ndere auch
;luI d,'n technischen und logicc:hen Aufbau dtor Rechen-
1II:a.<chine sowie der d;lmit ill "erbindllllg stehenden ,

D 44122 IX/42m
." .. E LoKTAC . lo. . f" RZ 19:;1

aIX ... "TM.Cllu"t;
01 •• "W"'. DUI'IC
UNO .USC.UE uER
'USLICKSCIIIUFT. I. DE7.F.~IDEn It60

Verfahren zur automatischen
Verarbeitung von kodierten Daten
und Rechenmaschine zur Ausubung

des Verfahrens
Einphe- IIl1d A .. <gabe,·orriehtllngen. --------------_______ _

Di.. bebnntell Rcchen;lutom;lten und Datenver-
;lrbeitunggn!agen erConlem ill1 EinzeUall Anweisungen
iiber die Art und den Abbul der numerischen oder
:oonstigen inlomlationsverarhc:itenden Prozesse. Die 10

Schreibweisc. ill der diese Anweisungen 6xiert werden,
wurde ~u Beginn der Entwicklung so gewahlt, daB sie
~\Yisse als elc:mentar erachtete tcchni..che Funktionen
der Anlage be:ochrieb. Die so gcschriebenen Anweisungen
wenl"11 iiblicherwei.<e .Programme genannt. Das Prograrnm 1$

filr .. incn Rcchcnpro, O etw;l und die m;lthematische
Fom",I, nlit der der llathL'InMiker die.<en Pro7.eO ge
wahnlich b.:schrcibt. kcnn~ichnen jeweils genau den
selben Vorgang. aJlerdings in ~wei grundverschiedenen
Sprachen. ...

Die Obe~t7.ung von der mathemati..chen Formel
sprache insl'rogramm wird iiblicherweiscPrograrnmierung
genannt; sic hat ~ich in praxi als cine uitraubende und
lehleranfallige. im allgemeinen nur lastige Ailgelcgenheit

Anmelder:
Dr. Friedrich Ludwig Bauer,

Munchen, Portschacherstr, 40,
und Dr. Klaus Samelson.

Munchen, Hiltenspergerstr.19

Dr. Friedridl Ludwig Bauer und Dr. Klaus Samelson,
MUnchen.

sind als Erflnder genannt worden

2
herau~tellt. Fur den llathcmatiker stellt die Pro- I, wendung neuartiger llaschinenlunktionen und -steu-
grarnmierungs..prache eine IIllgewohnte Formulienl1lg erungsabt:lufe sowie Anlagenteile ein Rcchenautomat
dar. die Oberdies noch von Anlagentyp zu Anlagentyp gebaut werden kann. der unmittelbar durch mathe-
wcchselt. Diese bei den meistell hesteh .. nden Maschinen mati..che Formeln in iiblicher Schreibweise gesteuert
jeweils vm;chiedene Art der Programmschreibweise wird. also ein fomlelgesteuerter Rechcnautomat. der
~eigt bereits. wie ,;ehr das Rcfehlssystem iiblicher 30 in seinem technisch ... n Aufbau und in seiner praktischen
lla,;chinen noch von der verwendeten Tcchnik abhangt Verwendungsmoglichkeit gegeniiber den prograrnm-
und wie wenig die auf der ganzen Welt einheitliche gesteuerten. Rcchpnanlagen bisheriger Art einen wescnt-
Rlalhemali~he Formclsprache von den Rcchenautomaten- lichen Fortschrit darstelltt.
bauem bish ... r ernst genollllllen wurde. Eine solche Rechenmaschine muO auBer den bekannten.

Die }Iangel der ilhlichen Programmierung sind in der lS mehr oder weniger Ublichcn Teilen cine Vorrichtung
Literatur berelts vor eini!;en Jahren k1ar erkannt worden. belitun. die diese mathemati..chen Formeln in iiblicher
llan ist jeduch den ~uniichst naheliegenden Weggegangen. Schreibweise analysiert und eine entsprechende Folge
vorhandene Rt'Chenantomaten universeller Art zu gewissen von Steuerbelehlen lOst. Dabei ergeben sich im eillzclnen
Routinearbeiten der Programmierung. die selbst paten- auch neuartige LOsungen liir die Erledigung gewisser
verarbeitungsaufgaben darsh'llen. heran~u~iehen. Es 40 Rechenabliiule in Anpassung an diese besondere Art der
gibt heute bereils Programme. die unter gewi.<Sen Ein- Verarbeitung der malhematisehen Formcln.
schrankungell die ganze Oberset~ungsarbeit von einer Die Er6ndung beruht im wesentlichell auf dem Ge-
m;llhematischen Forme! bis ~um Programm lOr einen danken. den l';:omponenten einer Rcchenm:a..chine cinen
iihlichen Rcchcnautolllalcn er igen. AnalYS;ltor beizuordnen. dern die mathematischen

Die Cbc~t7.lIng:<programme sind ~hr kompliziert 4$ Formcln in ilblicher Schreibweise ~ugcfiihrt werden.
aufgebaul nnd delllentsprcchend umlangrcich. Kleinere GcmiiO der Er6ndung werden die den einzclnen ZcichclI
Rcchenanlagen ~nd nicht mehr in der Lage. solche entsprechcnden Sil,'IIaJe in d • ., Reihenlolge der Auf-
AlIlgaben durch~IIIUhren. Umfangreiche Formeln ~u schreibung dem Analysator ~ugelllhrt und in diesem
iibersetun. liihrt auch bei mittc:lgroOen An~n zu entsprechend der Rcihenfolge des Eingangs gepriift. ob
iibermaOig hohem leitbedarf. $0 die Operationen soforl a ... fiihrbar sind oder ob der

DcmgegenOber ist es von Bedeutung. daO durch Eingang weiterer Signale abgewartet werden muO; in
gesehickte Organisation des Zusammenwirkens geeigneter diesem letzteren Faile werden die noch nicht ver-
Einzelkomponenten. gestiitzt auf grundsitzliche Studien arbeitbaren letCheR in einen Speicher (Keller) eingeliihrt:
iiber das Wesen von Rcchnllngsabl3ufen. unter Ver- beim Eintreffen neuer letCheR im Analysalor. die die -_.

www.manaraa.com

32

1094019
3 4

.;\Il~iiihrnng l~ilwr Op"'ratitm mit J:NOopt·iclu·rtcn Zt'ichcn symholc Ul1l1 7.lIl-:chikiJ,:C' 1\fltlt'jwidU'11 Ih'lIlIl1.t, tI,'r;ll t.
l·nn~ir:lich'·II. \\",'ni"t1 ,li\"X· ;':t':o'Ilf.>id'l·rtt.'u 7.A·ichcll in ul"r (I.\U jt~d('s 7..richcn Ih.,jlll C'fslJJ1:lliJ,!'f'1I Einlau{f'l1 ill -la ...
dur..:h dil' Art t.ll'r EinCiihnlll~ rl~lJ.:l·ll·~ten. 1It11J,:ckdlrtt!n Stcul'rw('rk l"inc RL"S('I"\,il'rullJ; VIlli :UI .. iell h,·li,·hi~ .. n
H,l·ilwn(olJ:\.· l'ntnmnn1l:11 mul \'crarhdtl't. PHitzcn rUr cine 7_1.hl odcr cincn Zahl~,t7. in "illt"1Il all ... irh

Dcr An;h'~'ltor illl cngcrcn Simw rnth!i.lt CilWll Fonn('l- .s h<-kanntcn Speicher \·crnnlaUt. wnhd ('illl" .zullI·dnun;.:
E'nt!'OChliis~·il·r._der :tIs Bt.-stalulldll'illl'n \'oretlt!"ChHiss.clcr. J!wi~hcn dil~m I'lat1. hl.w. dk-scn PI;it1.l:11 IIIld .("11\

cinr'l Fonllchllnsctzcr. cinen ZifC,'rnmnsct7oer uml ein betrelTenden GriiLlcnsymhol hi.. alll Wi,lerrull",lgcl&all"1I
AU:'/.":Ibe-tl'u,'rwerk aulwdst. ""wie cine HiUsste\lcr- winl. Oas GriiLlclIsymhol wirel in Formdn VOIII Sto'.wr-
cinrichtnn~ 70llr \'crnrheitnng von Indizr.s; dcr Allalysator werk strllverlretend liir die aul ,Iem zugi.'Ordnelcn 1'lal7o
iOl w"ilcrclI Sinne umlaOt alleh cinen GriiOcnvol'!lpeieher '0 bzw. Plutzen gcsllCiehertc Zahl hzw. 7..al&I-alz h~ha",ldt.
\lll<l eiUl'1I K'·lInzeiclll'lIent""hliis.;cI,·r. Di" lIcll'gun~ cines mit eincm (;roLl"nsymhul h~z('ich-

B"i tI,'r ,\II<liihn"'l(des Vcr/ahren. k:tnn :meh cine nch'lI Plat7.("; im Zal&lspeiehl'r ,lurch .. inc 7.,,101 ,·rr"lgl
wl'ito'l'!:ch"'\llc Ziirnckslclhmg der zugeliihrt('n Signale uurch uas Erl(iblsymhul " ulld Anl("be (Icr (;riil!,',
erlolgen; sic ist alK'r nicht notwc",li!: lind kann nur uurch Es kann vortcilhalt "'in. die ohenerw;ihnt" I'lalu"""r-
andl're. auOerhaib der Erfindunglie!(ende Vortcilcgerccht- 15 vierung erst zusammcn mit dcr ebell hesproclll:ncn
fertigt werden. Platzbelegung durch7.ufiihrcn. Eine Zuriickstclllln;; d,'s

GcmaO ciner weiteren AII~liihrung~form der Erfindung Rcchenvorgangcs erlolgt. wenn innl'rhalh ciner Formcl
werden dif'jenigen Formel7.eichen. welche Ziffemsymbole. ein GroDen.ymbol ins Steuenvrrk gel:mgt. liir <la.< noch
al,.., lahlell. darstdlen. VOII solchen Formelzcichen, keine Platzbelcgung im 7A .. hl.peieher vorgenommen war.
wdche Opcralioll5.<ymbole darslellcn. getrenllt und,:ao wobei von auDen nelle Information so lallge "erl:mgt winl.
sor~m sie zurftckgcstellt werd~1I mOs.""l. speicherfahigen bis der zu re.o;erviercnde Platz nllnmehr durch cine 7..ahl
Vorricbtungcn, ,·orzugsweise7.wci verschiedenentKellern.. besetzt worden ist.
namlicb dem Z;u1lkeller und dem Operation.~keller, Dureh die Einfiihrung der Buch..tahen aI. Zeichen ist
zugcfiihrt und \'on diest'n Vorrichtungen her dem Steuer- bcrcit.~ hier die Milglichkeit gt'geben. die Ansgangs-
wf'rk zugiinglich gemacht. as graBen einer Rechnung von vomherein mit Ruchstabcn

Dabci ist es zweckmaOig. die in dem Zahlkeller bzw. zu bezeichnen. so daD die mathemati;;chen Formeln
dem Operationskeller nell eintreffellelcn Zeichen jeweils ganz oder teilweise mit algebfllischen Zeichen geschriebcn
an die Spitze der entspn.ochenden Sequenz zu setzen und werden konnen.
die Entnahme eines Zcichells automatisch durch \Veg- Eine weitere Au,,!:estaltung dcr Rechenanlage i.t
nalune \'On der Spitzc der cntspn.ochenden Sequenz 30 durch)laOnahmen gegeben. die im folgcnden heschriehen
\·orzunehmen. und at. Stufe III bezcichnet \Vertlcn, Wah rend die hisher

Ein Ausflihrungsbeispiel fUr elas Verfahren in seiner beschriebene Ausflihrung bereit. cine Rechenanla:;e mit
einlachsten Fonn wird als Stule I im lolgenden niher direkter Formelsteuerung und Niederschrift des gcsamten
beschrieben, Es ist zur Verarbcitung einfachster Formel- Ablaufs. d. h. der Eingabe und Resultate. in mathema-
ausdrucke geeignet. Die Fonnelsymbole der Arithmetik 35 tischer Schreibweise ermiiglicht. ist eS haufig erwUnscht.
+ - y- X : () werden dabei vorzugswcise in Form von die Moglichkeit der Wiederholung von Formeln ausnutzen
Kodczeiehen zur Auslo.ung von Steuerungsablaufen. zu konnen. Zu diesem Zweck wird die gesamteeinlaulende,
d. h. von Ma.<chinenfunktionen. benutzt. Ocr Zcitpnnkt nach wie vor der direkten Formelsteuerung dienl'nde
der endgiiltigcn A'l.IOsllng des SteuerunglkLblaufcs durch Information gleichzeitig nehenher in einem I;ormcl-
cin Kodezcichen hangt Ilnler Um.~tiinden. z. R, bei der 4" speicher gespeichert. Zur ErschlieOung weiterer Milglich-
Klammer. davon ab. daLl ein oder mehrerc nachloJgende keiten werden zur Numerierung yon Formclgruppen
Kodezeichen eintreffen. Aus diesem Grund werden die besondere Zeichen als Kennzeichnungssymbole benutzt.
Kodezeichen zunachst in dem Operationskeller zuruck- derart. daB jedes Kennzeiehnungssymbol beim erstmaligen
gestellt und erst dann. wenn der Ausfiihrungszcltpunkt Einlaufen in das Steuerwerk bewirkt. daD die Zuordnung
eintritt, dem Operation.keller wieder entnommen. wobei 45 zwischen dem Platz. den der Anlang der Formclgruppe
die Darbietung bei der obenerwihnten sequentiellen in einem Fonnelspeicher einnimmt. und dem Kenn-
Aufreihung automatisch die richtige ist. In ahnlicher zeichnungssymbol bis auf Widerruf festgehalten win!.
Weise wird durch den Zahlkeller dafilr gesorgt. daB die Es ist insbesondere moglich. die Anfange von Formel-
\"orzunehmenden Rechenoperationen automatisch mit gruppen zu kennzeichnen. wobei das Kennzeichnungs-
den jeweils dafiir in Frage kommenelen lahlen vor- $0 symbol etwa bestehen kann alL~ Ziffem mit AeifUgnng
genommen werden. sobald aile liir elie AusfUhrung eines spczieUen Zeichens. filr das hinfort • benutzt ,vir(!.
der Operation erforderlichen Zahlenwerte vorhanden Eine laufende Durchnumerierung soli nicht erlorderlich
sind. Die Zahlen. die in ciner Rechnung Verwendung scin. Dabei ist es Icdiglich notwendig. 1I'0r dem Formel-
finden sollen. kilnnen durch Ziffernsymbole und ent- speicher cinen Vorspcicher a"zuordnen. worin lII,ter der
sprcchende Kodezeichen. z, B. im Dezimalsystem. dar- ~5 Nummer jedes Kennzeichnungssymbols a1s Eingang
gestellt werden. derjenige Platz des dahinterliegenden Hauptspeichers.

Solche Formelzeichcn. welche ein Resultat verlangen, der mit dem betreffenden Kennzeichnungssymbol ge-
insbesondere das Gleichheitszeichen. werden ciner kennzeichnet i~t. festgehalten ist.
besondcren Vorrichtung. nimlich der Ausgabesteuenmg. Da.. Vcrlahren kann weiterhin so au.~gebildct werden,
zugcfilhrt. 60 daD bereits die Angabe eines Kenn7.eichnllngssymbols in

[m lolgcnden wird auf ein weitcrcs Ausfiihrnngsbcispiel Verbindung mit eincm spcziellen Zeichen. z. B. einem
des Verfahrens eingcgallgcn. die aJs Stule II bczciehnct al< Sprllngsymbol I:l'niigt. 11m ZII hewirken. ciaO clie
wird. Rechnung wiederholt wird. allgrmcin('r. daD ~ie mit drm

In vielen Fallen ist "" erwiin,;cht. salehe Teilergebnis.o;c. Rcginn der unter dem belreffentlcn f(rllnzeichen im
die sich wiederholen. nur einmal zu bercchnen und sic &5 Formelspeicher notierten Formclgrullpc IlIrtge""tzt wird.
in der mathematischen Schreihweisc durch bcsondere wohei der Obergang in bekannter Wei", ,·on Beding"n:::en
Symbole. z. B. Buch.tahell. zu lK'zeichnen. Gema!! der abhangig scin kann, Eine Zuriickslellunl(c1"" Rl'Chen-
weiteren Erfindung werden zur formelartigen Benennllng vorgangcs er(olgt, wenn ein Sl'rungo.ymbol aul eine noch
von Zahlen oder Zahtsatzen. z. n. AusganJ:S<laten und Teil- nieht im Formelspeicher lIotierte Formelgrul'pe fiihr!.
crgcbni •• en. bc!;ond~rc Zcichrn 'lIs alsebrai!IChe GruOen- 70 wob~i ebenlalls yon au Den neue Inlormali.,n vrrlangt

www.manaraa.com

33

1094019
5

win\. In <li,.,.~m wi,' auch in ,1"In ol"'n~rw:;hlll~1I Fall.
daB ..-in c.;riUl,·n~vnthol in ""in,"r F'ornu·1 t"rsdu."inl. da~
noeh kl'int' 1J"It'gling illl S,,,,ich"r hat. win I <ii,' "rrlallr;:le
Infonnation im Fornll'l~p,·icl ... r 1"diJ,:lich lIoli"rt unler
FC5thaltllng ,I"r <lllrch (('·1I111.l·ichuulI~,:s.'ylllhole he- 5
zcichnetell Plat1-" d"r Anl;jllg,' ,·illl.,·llIcr Forln"Ir;:"'ppen
im Formeispoichcr. ni,,,,'r \'urJ,:,mJ,: hricht aulolll:llisch
:lb. \\-enn" (Ia~ 1'(,l1Iu:dcllluIIH:~~rmhol (hOr au(:,:,"rllrt·lwn
Forrn !!TUpl'J:. ... all:oO~l·\\"I·rh·t wi i h/.\\", \\','nn ,lh,1 auf
l:'~nl(\'I; GruUL" mit ,"int°r Z;,hl bdr;':l worll,'n ist. wnlu-i ,.
d .. "r J~c::ht·n\·o1l:an~ .\n ,l,"r l;ntcrbrcchnn;:~ ... tdlc wi", .. it"r
ein .• .,t7.t. insb,.':'lm,lcr,· im 1,·I7.h·rw;ihlll<'1l 1',,11 d"r Sprullg
alL~~efilhrt winl. llei ,\IISIIUI7.1I111(dil'Sc"" V erfahrells
erfol"t eine Zuriick..tcllulIg des RllChellvorg:lIIge._. auch
well; da.. zeitlich zlllctzt im I~ormr\sp~icher notierte 15
Forml.'l7.cichell abge:lrb~itrt i~t. ohne t\;ll.l cs eincn
51'nmg auf cill seh!)11 vorhalldencs Kl.'nn7.cichnllngs
"\'mbol hcwirkt. Die)[~hlunr::. <I"D der I'ormdspcicher
ai'''carbeitet ist. 1lC\\;rkt dallll. daB da.~ Stcuenvcrk von
auBen ncue Inloronation vcrL'lllgt. die im FormeLqpeicher ao
notiert und gleichzeitig aIL~gc(iihrt wird.

An Stelle des bisher l'erlolgt"l1 Prinzips der bald
mO"lichen Ausfilhrung aller Verarbeitungsvorgange von
Eo;meL.ymbolen kann auch \vahlweise cinc weitere
ganzc oder tcilweise ZurUckstellung bis zu einem gee IS
eigncten spdteren Zeitpunkt vorgenommen werden.

Ein besondcrei Zeichen kann als Symbol INicht·
notieren. interpretiert werden, so daB anschlieOend die
Notienang der von auBen einlaufenden Information bis
auf Widerruf. z. B,. durch ein aufliisendes Symbol oder 30
das nachste "inlaufende Kennzeichnungssymbol fllr
Formelgnlppen. ulltrrdrilckt wird.

Die Maschine zur Auslnhrnng des Verfahrens enthlffi
in ihrer einfachsten Allsfilhrungsform eincn Vorent
schlilOler. dent simtliche Fonnelzeichen in der Reihen- 35
folge der Ublichen Schreibwei-e zugelnhrt werden und der
mchrere AlL0;g5.nge aufweist. die zu einem Ziffemumsetzcr,
zu einem Operation..umsetzer und zu einem Ausgabe
steueTlvcrk sowie zu einem Steuenvcrk filrobedeutungslose
Zeichen. fUhren. Die Umsetzer der Steuenverke konnen
mit dem Schreibwerk in Verbindung stchen.

Der Zahlkeller und der ZifIernu""",tzer sind dcrart
verbunden. daB der Zahlkeller die Zahlen in der Reihen
folge des EintrefIens von dem Um..etzer abnehmen kann
und daB femcr die jL'weils er.Ite in der Sequenz stehende
Zah' beim Eintreffen eines enbprechenden Befchles Uber
das AlLo;gabestellerwerk aIs Ergebnis dem Schreibwerk
zugefllhrt wird.

Der Operationsumsetzer stehl mit dem Operations
keller in Verbindung. so daB er in diesen dic Operations
symbole in der Reihenfolge ihres Eintreffens einspeisen
kann, wobei das jeweils zuletzt eingespeiste der von unten
n.u:hn1tkenden. frUher eingespeisten Symbole bzw. das
n,'11 ankommende Symbol an dllS Recbenwerk abgegeben
"ocnl"11 kann. um solche Operationen auszufiihren, filr
die ,Ii" lellllChurigen Operanden an der Spitze der im
Z.'lhlk"lI,·r beftntllichen Sequenz vorliegen_

Es ist lewcckmiiOill. daB solche Zeichen. die eine Formel
amchlieBen. insh''lIOntlere dll.$ Gleicbheitszeichen oder
das Ergihtleeichen. cine Prii(ung auf "'inn volle Formel.
\-crnnla..sen.

Der Operntinn>kcller lind drr 7..ahlkeller konnen Ein
richtungell nulwei.;cn. <lie die zU!,:efiihrten Zcichen .la
durch seqllenticll speichem.d"l.I.ie die berei tsgespeicherten
i".cichell in ,I"r I~eih~nlnll.'" <les EintrefIens nach unten
'V\'ilrr!IChi~~1I UII<l "inc Ab""be nur des jeweils zuletzt
,,""'pdchertcn oder <les nhersten der von unten nachzu
,;chi"benden Zcichen gesbttcn.

I~'i einer anderen Ausliihrungslorm weist der' Ope
mtinnskeller und/O<Ier ,Ier 7..'\hlk"ller Einrichtungen au(.

6
<lit' <lir lengt'fiihrtrn 7.rith~n ,1 •• llIrch SNIIII'nli,-n 'p:·ich,·rn.
daU jl"(k~ cilltrt·(f,'nclc Z,·idH'n allf ,lc'lI l'lau, ' r .1t·1II
7.ulellet dllgl'lrnrrc",," I:l .. "'1.1 wir,l. d"U ,Ii, ·r 1'1,,11.
fcstgehalh'lI winl IIncl .I'IU fer"er ,Ii,· .\hll .. hlll,· "UII d'-III
7.III,·l7.t fcstgdl .. ltenrn I'lal7. ,·rlnlgt.

lJa.o; Rt.-chcllwcrk ,"crarhl'itt·t elil! im Ohl!r:-.tl·n n:h'r in
ucn lJcidcn uhrl"!'lcil C;r,chu''','n (It'~ l.L1llk("I"·r~ h.· ..
filUllidwll Zallle'n l~nt .. prt'Clu·JIII (h'lI "UII Ih'r Op,'raliulI"'io
~tt·IIc.·rnng l'rhalt.'ut'n .-\nwd"'lln;':(~l1l11lfl J.:ihl.la ... J~r;';l'hnis
wi,·.!,'r all ,I ... nh"rsl" G"-ch,,U d.·, Z"hlk"II,'r' ah.

D,L"i Auo;gahl"StCllcrwl'rk io;t ,'nnm;,:",wl·i ... ,! .nit dl'lIl

Z,IIII1,:O'lI"r .Io·mrt ,·,·rhuM"clI. rlaU IM·i", l~illtr..r['·11 ,·illr.s
Gieichlll'it'l.,·ichcn~ lin" J:cgchcllclI/all, ""chlnl~en.h·r
Zcichen IZiffer vcrl"n;:t. die VcrbindunJ: <l~, Zahlk(,llrrs
mit dem Schrcihw"rk hcrg""tdlt und <lie im .. bcr.ten
GcschoB dc'S 7..'lhlk~lIcrs brftll<lliche Zahl gaRlI Rller
teilweisc an "a< Schreihwcrk ahgegehclI winl.

Mit <ler angr.gd,,·nen Ma~hinc kallll all<:h ",it Index
griil.lcn gercehnet wenlcn. Oi" RechnllllJ: mit (lIdl'x
gmBcn erfolgt tL'lbei ""nz analog wie dlL.~ RL'Chnen mit
den iibrigen RechclIgr'iB~n. Zur Be7.eichllllllg von
indizierten GroOen konnrll hesondere Zcichen aL~ Index
symhole verwenclet werden. die Beginn und Elide der
Indizes und die Abtrennung der cinzelnen Indexstellcn
angeben. wnbei die:;e Zcichen besonderen Vnrnclltungen
zugefnhrt werdcn. die intermedilir eine Unterbrechung
der laufenden Rechn.ung. die Answertung der auf den
Indexstcllen beftndlichen Au.-drUcke nach dcm oOOn
genannten Verfahren und die Ansteuerung der durch die
Indexauswertung (e,.tgesteUten Einzelkomponente der
induzierten GruBe bewirkr.n. Die Dllrchflihrung von
derartigen Rrchnnn~n lVird w<'iter unten beispic\swci"C
naher beschrieben. wobri dicse Verfahren aIs Stufe IV
bezeichnet sind.

Weitere Merkmale und Vorteile des Emndungs
gegenstandes gehen aus der folgenden Beschreibung von
AIL,filhrungsbei'pielen hervor. die an Hand der Zeich
nungen beschrieben werden.

www.manaraa.com

34

1094019

PATENTANSPROCHE:

t. Verfahrcn zur automati.'l:h('n Verarheitllng von
kocli('rten Daten, z. B. arithmctischen Form<"lll in ss
Ilhlicher Schreibwei!iC, die al, kodicrte Zcichcn Klarn
mem, Operation!lSymbole, Zahlcn und Variable ge
mischt, Uc7.imalkommas, Indi7.cs, EntschcidulIg.
symbole sowi., Fonn('lnummcm enthalten, in einer
datcn\'erarhcit('n<len Ma.'l:hine mit dner Eingahe- und 60
einL'I' AlIsgahc\'orrichtllng, dadurch gekennzeichnet.
daD die den cin7.eln,·n Z,·ichen ent"prLochcnclcn Signalc
in <ll'r I{"ihenlolge cler Aulschreihung einclll Analrsa
tor (4, 28) zugdilhrt lind in di~m entsl'rcchend d('r
I~('ih"nlolgc dcs Eingan!,,,, gel'rtilt werden, ob die 6S
Operalionen solort auslilhrhar ,ind oder oh der Ein
gang \\'citcrcr Signalc al>gcwurtct werden ,nuU. claB
in dit.oscm let7.t"rcll Fall die nnch nicht v.,rarhcitharen
7.cichell in <'illen Speicher (K"II('r) dngc!Uhrt werden
1111<1 .laU hdlll Eintrcfi"n 1l('lIer Zeithcn illl Analysator 70

20
(4. 28). die ,lie A,,-liihrun!: ,·iller Op('ml i"n mit 1:"
~1lC.·i(·II(·rll·fI l.:·iclu'n (·rmf'h'lidICIi. dil':"Ot! ~t·'I .. ·jdll'l"l'·1I
Zcicl,..n in der ,I"rch die Art der EinliihrulI!: 1",1-
~c1l'J:tcn IIIn~rkl'hrtt'n R('ih('nfol~c ('ntnrmmwn lin'.
v("rarhl'itt't \\'('nh'lI.

2. Verlahr('n n .. ch An,pruch i, d: .. lurcit !:,·k,·nll
zcichnC't. daU illl Anal,,!'i.ator uil: FflrnU'll.(~idH"n lI.wit
Zirr"111<ymIM,It'n (i' .. ,hi,·u) nnd Ol;"ratinnswlllh""'n
gl·trt.~nllt sind unu. ~i\~rll !'Ii\! 1.:1ltickJ:c. tclit \\',-nh'll
mii!"oS4.'n. ZWcl \'\lrsC"llil'th'rwn ~pt'iclll'rmltigcn Vnrrich ...
hmJ.:l"n (11. 12). \"orl.lIJ:~\\-c'i " 7.\\'ri \'cr~hit'4lc'llcl1
.K,·II,·rito, mlmlich ,1t'1I\ Z:,hlkellrr (11) IInti ,1t'1I\
Operationskeller (12), zUl;dUhrt werden.

3. V('rlahr.-n nach AnsprUchen I unu 2, r1n,llIrch
gekenn7.cichnet, daU die in dem Zahlkeller (11) hr.\Y.
dem Operationskeller (12) neu eintrcClend~n Zeichcn
sich jeweils an die Spitze der entsprcchcnden Scqucn7.
set7.en und die Entnah'ne cines Zcichen.< alltomatisch
durch \Vcgnahmc von tier Spitzc dcr ('nt"prechenden
Scqu"nz erlolgt.

4. Verfahren nach An.~priichen 1 und 2, dadurch
gekenn7.cichnet. daU solche Fomtcl7.eichen, welche cin
Rcsultat \"erlangen, insbesondere da.~ Gleichheit,
zeichen, einer bt..~ndercn Vorrichtllng, namlich der
Au...gabcsteuerung (6), 7.lIgcliihrt werden, daD ler
ncr dadurch autornatisch das Endergebni, der Formel
auswcrtung zur Au.'l(abe.gebracht wird.

S. Verlahren nach Anspriichen I bis 4, dadurch
gekennzeichnet, daU 7.ttr fonnclal'tigen Benennung
von Zahlen oder Zahl.at7.cn, z. R. AtL<gangsdatcn und
Teilcrgebnissen, besonderc 7..cichen, z. 11. Buchstabcn,
als algebraische Grollensymbole lind 7.IISChorige Kocle
zeichcn benutzt wert'len, derart, d.'\11 jedes Zcichen
beim erstmaligen Einlaulen in rlcn Analy.ator (4, 28)
eine Rcscrvierung von an sich bcliebigen PI5.tzen fUr
eine Zahl oder einen Z,'\hlsatz in einem :In sich be
kannten Speicher vcmnlnDt, wohei ('inc Zuordnung
zwischen dicsem Platz h7.w. dicscn 1'liitzcn und dem
betreClenden GroDensymbol illl GroDenvorspeichcr (24)
bis aul Widerruf lestgehalten wird.

6. Verfahren nach Anspmch 5, dadurch gekenn
zeichnet, daD das GroUcnsyntbol in 1'ormeln yom
Analysator (4, 28) stellvertretend filr 'lie aul dem
zugenrclneten Platz b.w. Plat7.cn g""lx-icherte Z,,\hl
bzw. Zahls;ltze behamJtoJt winL

7. Verlnhren naclt An.'priichen 1 bi, 6, dadurch
gekennzeichnet, daD 7.ur l3ezcichnung von indi7.ierten
GroDen bcsondercZcichen als [ndexsymholc verwendet
werden, die Beginn und Ende der [",liz,," IIncl die
Abtrennung der ei.n,..elnen Indexstellen angehen, wo
bei di~ Zeichen im Analys.'\tor einer HiIIs.-;tcuer
einrichtllng (28) zugcliihrt werden, die intermediar
eine Unterbrcchllng der laulenden Rechnllng, die
Allswertllng der auf den Indexstcllen bcfindlichen
Ausdrlicke nach dem ohengcnanntcn Verfahren und
die Anstenerung der dllrch die Indexauswcrtung
festgt.'Stcllten Eillzclkomponente der indizierten GroUe
bcwirken.

8. Verlahren nach An..priichen I, 5 und 6, dadurclt
gekenn7.cichnet, daO cine Z",ilckstcllllng ,Ies Hl'then
vorh'llngcs erlolgt, wenn innerhalh eiller Formel ein
GroDellsymbol ill dcn Allalysator (4. 28) gclangt, fiir
das noeh keine Platzr<oscr\'iernng illl Z,'\hISJ'I'ich"r (22)
vorg<'nommcn war. wohci von anU('tl n, .. tlc Information
so lange \'erlangt wirel. bis der nllnmehr 7.11 """"""ie
rende Platz durch cinc lahl llC<ctzt worden ist.

9. Yerlal,ren nach Anspriich,," 1 his 4. da<lurch
gckenn7.cichnet, daU '"r :O:umrricrung von Formcl
gruppen bcsondcre 7.cichen al. J{elln7.cichnllnJ.:-<\·m
bole unci &ugchl;ri,::~ l\ocl(~I.(·ich("n ;'f"fU1t7.t wl·n!."r~.

www.manaraa.com

35

1094019
21

c.l rart. daO jl..xlL'S I'('nllzt.·ichc.·Il:,ymhol h:-i.a ,'r ... tm;lli.
;.!<"'n Einl~\tIrl'n in den .. \naly~at()r lwwirkt .• laU tlit.'
ZUOniIl11l1 zwi~hl'n clem Platt.. «1"'11 ,lcor Anran;:, (h'r
Formclgn~lllC in l'illcrn Fonncl ... p..-ichc.·r (23) (·in ...
nimmt, lIml d~J1l K,·nn1.richnllnJ.:~ ... ymhul his .. UIC S
\Vidc,",f i", KCIIII7.l'ich'·II'·lItschliiUh·r (25) fcstgc
haltell winl.

10. \'I'rfahrclI naeh AI"prnrh 9, d"dureh j::l'k(,l1l1-
zl'ichnrt, daU 1'tt'l"\·it .. (li,· An;:al , "ilU':o:, Kl'IUllC.'iclll\UI1;:S ...
s,'mhols in \\·rbindllllI-: mit c.'iul'm ~1l\·1.idlcn ~prung ... 10
s\'mhol genii!:t, mn 1.lI hl'\\'irk('n, daD die Reehllllllg
mit dem B",:inn ,I"r nnt"r d,'''' bl·trcf(,·ndl·1I Kenn
zeichen illl Forlllc\'llCicher (23) noticrten Fonnel
gruppe fortgl":'Cl7.t win I, wnhei der Spnlllg in lx-kalln-
ter Weise ,'on Bedingungen ahhangig scin kann. 1$

11. Verfahren nach A'''priichl'n I, l) IIl1d 10. dadurch
gckennzcichnet, daD cilll' ZlIIiick,tellnng dt'>' RL'Chen
,'orgallg< erfolgt, wenll dlL' 7.eillich 7.ulel7.t im Formel
sp'·icher (23) 1I0tiertc Forlllcl7.,·ichcn ahgcarhcitt't ist,
ohlle daD c,; .. in,·n Spnlllg auf ein schOll vorhand"nes so

Kennzcichnungssymbol hewirkt, wobei "011 auBen
neue Inlonuation \'erlangt \\'inL

12. Verfahren nach An$priich~n lund 9 bis II, da·
durch gekennzeichnct, daD ";11 Sprung~ymbol, das auf
cine noch nicht im Fomlel~peicher (23) notierte For- S$
melgruppe IUhrt, bzw. die Meldung, daD cler Formel
speicher abgrorbeitct i.t b7.Wo daB dn GroBcnsymbol
in einer Formel erscheint, das noch keine Belegung im
Zahl.peicher hat, bewirkt, daO der Analysator den
Rcchen\'organg abbricht nnd von au Ben nene Infor- 30
malion "erlangt: ,Ii~ Informntion wird mindl",tens
so lanl(t! im Formdspcicher olier, soweit es sich urn
dne Vorcinstt'lIunh",pcichcrung hnndeit, im Zahl
s""icher Il'dil(lich 1I0tiert, hi. aIle zur Fortsetzung der
R\.'Chnung notwendigenAngaben zur Verfiigung stehen, 3$
woraul der Rcchenvorgallg automati,;ch an der Unter
bn'Chungs.,telle wieder einsetzt.

13. Verfabren nach An'prochen I, 9 und 10, da
durch gekennzeichnl·t, daD eine Zuriickstellung des
Rccben"organges erlolgt, wenn ein Sprungsymbol auf 40
cine noch nicht im Formelspeicher (23) notierte
Fonllelgruppe fiihrt, \\'obei ,'on auBcn eine neue
Information verlangt· winl, die im Formelspeicher
1<,diglich notiert wird unter Festhaltnng cler durch
Kcnll7.cichllungssymhole bczcichncten Platze der An- 4$
fange einzelner Formelgruppen im Formelspeicher,
lind daD dieser Vorgang alllomati.ch abbricht, wenn
das Kennzeiehnungssymbol der aufgerufenen Formel
gruppe ausgewertct wird, wobei der Recbenvorgang
wieder einsetzto $0

14. Verfahren nacb AnsprUchen I his 13, dadurch
gekennzeichnet, daO wahlwcise an Stelle des bisher
bcloigten Prinzips der baldmoglichsten Ausfilhrung
aller Verarbeitungsvorgange von Formelsymbolen
l'inc wcitere ganze oder tcilwdse ZUrUckstellung bis $$
ZII cinem gceigneten spateren Zeitpnnkt vorgenom
men wird.

15. V crfnhrcn nach Anspriicben lund 9 bis 12, da
,hlrch gl'kl'nnlcichnet, daD cin hesonderes Zeichen als
Srmhol .nicht notieren. interpretiert wird, derart, daB Iio
an.ch'ieo.,nd die ;o;nlierung der von aullen einlaufen
den Infnnnalinn bis allf Widemlf, z. B. durch ein
auslo,..omles Syml.,1 od"r dns nachste. in den Analy
sator (4) einlauf"I"lc K,·nn7.ciehnllngssymbol fiir For-
ml'igruPllCn, IIl1h'nlriickt wird. 6$

16. Automatischc R,'Ch,·nma.o;chine zur AusUihrung
des Vcrfahl'ens nnch Anspriiehcn 1 his IS, dadurch
l.'ekenn7.cichnel, dnO der Analys:ltor cincn Vorent
schliiUler (5) cnthall, ,Ielll S;,mtliche Formeluichen in
der Reihenfolge dl'r iihlichen Schrcihwcise zuge!Uhrl 70

22
w,'nh·n. lI,Jd tt'r m::lm'I'(' .-\1I~:.:.'ilJ.:t' altrw,·i~t. (Ii" 7.\1

C-ilh.'111 7-in.·nllllll~l·II.(·r (7). 7.1l "illl'lIl 0lwr.lliun ... um
selZL'r (8) unci lU ('illt'lll Am,;,:aht':ooh'ucrwt'rk (6) suwic
,:u ,·illrm SI(,'lI'r\\,,'rk (9) fiir .hc,lcllllln~,ln"c Zeicl .. ,lIt

Hihn·a.
17. Rt'c1lclun;l,chinc nach An"l,rnch 1(,. fl;ulurda

gckclIllll·icilnc.'l. claU .lit: l!1I1"o('t/.t·r d.'r :-;lc'II.·(WI'I kt·
mit ,h'lI\ Schn·ih\\"(·rk (2) in Vcrhiruhm;.: ~h·IIl.·n.

18. I{,-chl'nmn""hi",' nach :\n'I"'iicl,t'n 16 11",1 17.
dndureh ~1·kcnn7.eichn"t, dnU <I"r Zahlkdler (U) 1111.1
!ll'r Zill"rnllm",tZl'r (7) d"rarl \'('rilln .. \t·n ,illli. "aU
der 7n"lhlk I,·r ,lic Z:thll'n in <\"r Hcihcnf()l~c <iI'S Ein
trellells \'on dem Vmsct1.cr aillwhmrn kallll 1111,1 dati
ferner elie jew";ls ersle in uer s.. ... luen7. slel ... n,lc 7.ahl
hei," EintreITen cines enL'prechellllen Ucfehl, lil.,r
das Au,,,,,ng,,teul'rwl'rk als grgchni_ elcm Schreih
werk (2) zlIgcfiihrl wird.

19. Rechenmao;chille nach Anspriichen 16 hi, III,
dadllrch gekenIl1.(·iehnct, ,hill (if'r Op"mlinnMlnl",tzcr
(8) mit uem Operatinnskeller (12) in V~rhindllng stcht,
so daB er in dicscn elie Operationssymholc in der
Reihenfolge ihres EintrcITcns einsl'ciscn kaml, wobci
nach der den Ahlauf der dirckten Forme/allswertllng
wiedergebenden Vorschrift entweder das jc\\'('ils zu
letzt eingcspeiste linter glcich7.ciligem :\ achriicken
der friiher eingcspcisten Symbole "on untt'n her oder
das neu ankommende.Symbol an das Rechenwerk (10)
abgegeben werden kann, urn solehe Operationen aus
zufUhren, filr die die zugehOrigen Operanden an der
Spil7.e der im Zahlkellcr hefinellichen ~cqllell7. ,'or
liegen.

20. Rcchenmaschine naeh Anspriichen 16 his 19,
dadurch gckennzcichnet, daD Einrichlllngen \'orl:'-""'
h~n sinrl, <lie heim Eintrerren .",,\Cher 7..ciehen. die <'inc
Formel abschlieOen, insbesondere des Glcichheits
zeichens oder de. Ergibt7.eichens, eine Priifung auf
osinnvolle Formel. veranlassen.

21. Rechenmaschine nnch Ansprilchen 16 bis 20,
dadurch gekennzeichnet, daB der Operationskeller (12)
und cler Zahlkeller (11) Einrichtungen aufweisen, die
die zugefiihrten Zeichen dadurch o;equentiell s~iehern,
daD sie die bereits gcspeicherten Zeichen in der Reihen
fo/ge des Eintreffens nach unten wciterschiehen lind
eine Abgahc nllr des jeweil' 7.uletzt gespeicherten oder
des obersten der von unten nachzusehiebenden
Zeichen gestatten.

22. Rechenmaschine nach Anspriiehen 16 bis 20,
dadurch gekennzeichnet, daD der Operationskeller (12)
und der Zahlkcller (11) Einrichtungen aufweisen, die
die zugefiihrten .Zeichen dadurch sequentiell speiehem,
daB jede. eintreffende Zeichen auf den Platz vor dem
zuletzt eingetroffenen gesetzt wird, daB dieser Platz
festgehalten wird und daD femer die Abnahme von
dem zuletzt festgchaltenen Platz erlolgt.

23. Rechenmaschine nach Ansprllchen 16 bis 22,
dadurch gekennzeichnet, daB das Rechenwerk (10) die
im obersten oder in den bciden obersten Geschossen
des Zahlkellers bcfindlichen Zahlen entsprechend den
von der Operationssteuerung erhnltenen Befehlen \'er
arheitet und das Ergebnis wieder an das oberste Ge
schoO des Zahlkell~f' abgibt.

24. Rl'Chenllln..:hin~ nach Anspriichen 16 his 23.
dndurch gekcnnzcichm·l. d"O ,las Au_,:nh.·,t('lIl·r
wcrk (16) mit ,Iem 7..ahlkelll·r (U) d~rnrt \'('rhllll<l"n
iSl, ,laU hcilll EintrcIT"n ~ines (; ... ·iehl .. ·it,7.1·ichl·n_ IIllIi
gc;:dll'III·"lnlls naehfnlgendcr 7.t'ichen .Zifil'r wriallJ(lc
die Vcrbin,llIng des Zahlkell~rs mil dcm Schrcihwer
hcrgestellt und die illl obersten GeschoO d~", Zaillk lcr.
befindliche Zahl gan£ oder teilweise an da~ Seh reib
werk abs~gehl'n win\.

www.manaraa.com

36

1094019
23

25. R\'dl\'''ma~d,inl' narh An~pn,,:h ~-I. ciaclufch
..:,'krnn1..-idlllct. d:tll in ,I"1Il T""I<'III"101 (1) "ill,' Erl:"b-
ni. ... t;,\lIOtl. \'or~"~'lHm i~t. dil.' hl'\"il kt. "aU dil' t'ill7.\.·lncn
Stell,,'n dl~ ErJ.:dmi:o.:oo<·~ j~\\"(·ils hdu, .:\n~hlag tier
"as.tf'" gt"!'ochrit·lwll Wl·ftll~n. so .taU jt'clt- J.:t·W\iI1~htc S
An/ah1 ,'un ErJ:('hni~!'oldh'n ;':l'~hrid~'11 We nlcn
l;ann.

26. R('ch("nma~hilh' 11:'\\,'h .. \n~prndu.·n 16 his 25,
dadnrcli ;.!,·k,'nn1.l'khtwt. ,1a:.l an ,h.'U \'ult'nbchHHl-
J,,'r (51 ('l11'im ~h·th·r\\'l·rk lk'tilhllic:il\'" (;riiUl'llt'nhchliiU- 10

lef an~\·~·hl..,:.;.~·n i!'or, ,lef 1\l·im t'r~tll1aligl'll Einlf,'t"f,,'u
'''inc;. (;rllU("n~\·l1lhol:,. \'orlll~:,w"i~' Wt'nt, l':" ulllniue} ...
1>:or auf ,·in oErl:iht7.,·iclt"nc f,.II:I. ,Ii"",,'m Cnill"llsymbol
die !\ullllll"r cines !n'i,'n Platz(", im 7 hlsl',·ichcr der
:Lrt :tuordnct, daB femerhill (L1.~sclbe Grollcnsymbol 15
ix'im Einlalifcn ill den Grolk-lIsp<'icher unmitt~lbar
die Ansteuenmg de!' zug~hOrig~n Sl'eicherpl:Ltzes :tur
Aufnahnte von 7..ahl"n aus dent Zahlkdler h:tw. dem
Rcch"Il\\'l'rk od .. r zur Abg:Lbe \'on ·Z,1.hlen in dt'n 7..ahl-
k!.'Ul'r bz\\,. da.< He':!tenwerk hewirkt. ..

27. I~,~hennta.<chine lI:Lch Ansl'riichffi 16 bi~ 26,
d:Ldnrch !!,'kcnnzcichncI, dall an dl'lI \'orcnt~hlillller
('ill im Stl'ucr",,'rk b!'findlichl'r KcnnzcichenentschlUO-
ler (25) angeschlos.'lCn ist, der bcim erstmaligen Ein
treffen cines Kemu:cichnungssymbols fUr Formcl- 15
gruppcn dicscm die Nummcr desjcnigen PIaUes im
Formelspeicher :tuwei.<t, aul den das erste Symbol der
n:Lch!olgt'nden Formelgntppe trifft, derart, dall femer
hin dasselhe I~ennzeichnungssymhol in Verbindung
mit eint'lll Spnmgsymbol unmittelbar die Anstcucrung 30
des festgehaitenen Pl:Ltzes des An!angs dcr Formel
gnlPpe im Formelspeicher bewirkt, von wo alL~ die
FormelentschlUlllung !ortgeset:tt "ird.

28. Rechenmaschine nach Anspriichen 21 und 22,
dadurch gekennzeichnet, dall der ZahlkeUer (11) mit 35
dem Rechenwerk (10) der:Lrt vert'inigt ist, dan die
Ublicherweise a1s M ultiplikanden - Diviwr - Register,
Akkumulator und Multiplikatorregister bczeichncten
speicherfahigen Einrichtungen des Rechenwcrkes
~ oder teil",eise in den ohersten Pliitz('n des Z:t.hl- 40

kellers liegen.
29. Rechenma..chine nach Ansprilchen 16 bis 28,

dadurch gekennzeichnet, d:LB die Platze des Zahl
kellers :Luch im Falle des Vorkommens von 7..ah1en
wechsclnder Llinge voll au~genut7.1 wt'rden, wobei die 45
einzclnen Zahlen gegebenenf:Llls durch M:Lrkicrungs
oder SchluBzeichen \'onein:Lllder getrennt sein konnen.

30. Rcchcnma.chiue n:Lch An.~pruch 28. dadurch
gekenn7.cichnet, d:LB der Zahlkeller nach oh('n als
Appendix fortgcsetzt und andererseits mit eim'l\l 50
rin.:formig!.'n Speicher Uhcr Vcr.;chiebeeinrichtullj;Cn
vcrbllnden ist, derar.t, d:LB die DurchfUhrung der
Rccht'nop<'rationen :LuI synchrone V!.'rschiebunl:cn im
Appendix und im ringformigcn Speicher unter gl"ith-.
7.riliger st!.'llcllwei r Addition und Vcrschi!.'lnl\l1: in u
dl'll 7..ahlkeller hincin :turiickgc!ilhrt werden k:Lnn.

31. Hechcnma..<ehine nach Ansl'ruch 28, d:Ldurch
I:ekl'nllzcichnct, dall der Zahlkcll!.'r al~ ringfOmli,;er
Sl"'ichcr derart aU~l:childet ist, daB er durch V cr-
~ hi,·I)('('inridttunl:'·n in Vl'rhinchml: mit ('in .. m w,·;tc- '"
rl'll rill!lf,irmil:!.'ll SI"'ichl'r ~ll'hl, ~ dnll ,lie Hl'chl'n
of".'ralimlC"ll auf S)"nCIII"0I1C ':rr.ochi\·hun~"Cn in clt"u
heic!'-'I rillJ,!rt.mligc·n Sp"ic1lcrn ulltrr J.!}t-ich7.l"itig
.tdl"n",(·i",·r J\t1dition in ,kn Zahlk,'Jl(,. hin('in 1.urtick-
I:cfiihrt wl'rclrn killlnrn. 6S

32. 1~"clll·llm"schinr. ?ur An.mhntnl: d!.'S Verfahr.n.
nach Anspriichen I his 15. dadnrch I:ekcnn?('ichnet,
daD die i{echcnr(',;i<trr al. :LI1stell!.'rbarc. abcr nicht
notwendi,; verschicbbare Sl"'ichcr :Lusgchildet ~ind,
drrart. daD Uber p.1.rallel au~scbildete Suchrinrichtun- 70

24
I:,'n tli,' 0i"'r:tntlrn abl:"!:rifi"n untl tI;ulttrdt ,lie
Dnrchliihrung lief l~I'chl'nl)l"'latinrU'1I ililf ~11L./.,.~~i\"c
stdl"UW('i!'oC Additioncn 7.uriickJ,:c .. fUhrt win!. wu}'l'i
das Erhdmi~ in c·illcm drr),t·ioell Opc.·rand,·1tI,tit7.c
wiNler aU/I:"IO:llll w"nlcn kann.

33. l~(·cllC.·llIl1a~hil1t· lIt\ch "nspruell 32. d~lfll1reh
~('kl'11I17,(·kllllt'l. ,I"U .Il'r Z;.lllkc·lIf·r UIICI r.:rg:c·I"·IH·nCall,
lIas MlIltil,lilmlulc·I1 .. I)i\,j~ur .. Hq.~i~tl·r als an~Ic.'lI ... rI)al(·,
aht'r nidll I1ntWt·luliJ.: \'c·r!'>4.'hit·hlt;Ut' Spc'idlt:r :111"'1-:"
hil,I,·t ,ilUl ","l ,1"L1zur fh,rcl,fiihruttl: 'il'r "ril/ttlll'li
~dlt'll 0p"ratiullt'n d.'r ZahlKdlt.'r mill)(!IlUl7.t \\ in!.

3-4. H.t"Ch"IlIllO\~hilU! nach An~priiclu'n J2 lIIu1 33,
dadurch I:ckcnn1.,·ic\.n,·I, olaU tI"r Zahlkl'lh·r (11) !:an1.
od';r tl'ilw,·isc in I'liit1.~ ,I,'s an .ich \'orhanrlcne" ,..:,1,1-
speicher. (22), \'Or7.uJ,'Sw,·i"" in die jcwcil. freien Platzc,
gclegt wird, W"IM·i ,I!.'r jcweiligc St:Lnd ck'S freien
Speichers nntl dcr jl'\~ilise Stand der Spitzc d"r 7..ahl
kcllei-scqucnz dnrch lx'SOn(l~re Zlihlre,;ister f,'Stl:e
halten werden k:Lnn.

35. Rechenma..<ehine :tur AusfUhrnnl: des Verfnhrcns
nach AnsprUchen 1 his 15, d:Ldurch ,;ek!.'nn7.eichnct,
d..1.B an Stl'lIt' de!' 7..ahlkcllers cin 1'lal7:nummcrnkeller
tritt, in dem allstatt dcr in d"n Z,1.hlkl'lI"r cin1.ufahren
den Zahlen dercn 1'I:L17.nummcrn im H:Luptz:Lhl,,,,,icher
iestgehallcn und bei der Fomtelausw"rtlllll: ,t"I1-
vertretend fUr die durch sie anzlL,leuernden 7..ahlen
beh:Ll1delt werden.

36. Rechenma..chine nach Ansprilchcn 32, 33 lind 34,
dadurcb gt'kennzcichnct, d:Lll der Operand ",Ier die
heiden Op<'mnden ciner arithmetischen Opera lion
mittels zllhl!5.itiger Register, die von dt'n Inhalten des
PI:Ltznummemspeicher.; her einl:e5lellt werden, :Lnge
steuert werden nnd d:LB die Spciciterplalze des Rosul
tats von dem Rcgi~ter, in dffl\ dcr jeweilil:e Stand dcr
Spitze der Zahlkellerscqucn~ !cstl:chalten "'ird. her
angcsteuert wercien, wobei der Stand des Registers
Ifreier Speicher« zur Sinnvolltcstnng herangezogen
werden k:Ll1n.

37. Rechenrnaschine nach Anspriichen 35 u nd 36,
d:Ldurch gckenn7.eichnet, d:LB zur K!.'JIIl7.eichnung von
Z:t.hlen wcchselndcr Lange die Platznummern des
Zahlenanf:Lnges und die Stcl\t'n7.:Lhl im C;rolk-n\'or
speicher (24) iestgehalten werden.

38. Rechenma.o;ci1ine nach Ansprilchen 29 ocler 37
und 38, dadurch gt'kennzcichnet, daB mit 7..ahlen
wechselndrr und im Prinzip belichil:er Liinl:e ge:Lr
heitet wird.

39. Rechcnmaschine znr Aus!lihrung des Verf:Lhrens
nach Ansprilchen 1 bis 6, dadnrd, !:ek('nn7.cichnet,
daB zur Auffindnng d,'r cin7.l'ln~n KOlllponentl'n von
Zahl.atzen, die indiziertcn Gni!lt'n ('ntsl'rcchl'n, die
Platznummer des Anf:Lnl:S d,'S Z,'Ihlsal7.l'S und die
I{enn!:,oOen fUr den Ind('xlauf snwi~ gl'gehcn"n!alls
die 7..ahllangc im Griilk-nvor.;pdcher (24) fcstgeh:Llten
werden.

40. RcchcmnllSChine nach Ansl'r\1ch 39, dadllrch
g('kl'nnzeichnet, dall cin!.' Zu\vt'isun!(\'on Speiclll'r
pJ:it7.en Z\l GriilJt,nsymbolrn, insbcsondrrc indi1.icrten
Gr •• U.'nsymholcn, bcim "rsll'll Auflr~tpn einrr "xpli-
7.itcn Spciclll'nm,;svorschrift vor';l'nommrn winl. wo
Ix'i "inl'r zahlflihil:cn Vorridtllllll: ,I"r Stand d<'S .In·i,·n
Spt·iclu.·n;. (~ntnOnllll('n llI1C.l illl \·Uf:-OPl·iclll'f lIntC'r dcnl
l~il1gnn~ dt'S GriiLk'nsyml",I!'o ~\.-sp...idll·rt win\ und
\\,oh,·i f,'mcr di" K"nu/:riill"n liir r1rn Ind,·xlnnl. !!"
I:ch,'ncnfa\ls l'inschli"lIIirh tI"r 7.ahl\;in!!rn. cler S""i
c11t~nlnJ.:svorschri(t entnommrl1 ",,'nll,lt.

41. I{cchrnma..chine nach At"priichcn 39 und 40,
dmlllrch gckcnn:tcichnct, d:LU ,lie Indexsymbole ciner
Hilfssteuereinrichlung zlll:cfilhrt ""'rd('n, di" dcn
Ohcrg:tng :tur AU<"'rrtnnl: der l'onn~lau"lril~kr anI

www.manaraa.com

37

1094019
25

clell einZL'ln~n Intl,·,..trllen ver:lIllallt lind fiir die Ein
schiehung dcr s!",zicllen Index-Auswertungsopcr:l.
tiollen, die mit dell Kennw-oCc" des Inde.'Claufes bzw.
der Zalllliinge und der Platznummer des Anfan{;S
durchzufiihren sind, sorgt und mit der so errechllcten S
Platznummer der betreffcndcn Komponente der indi-

26
zierten GroCe diesc im Zahlspeicher aufsucht und sie
der weiteren FormeJauswertung zur VerfUgung stellt.

In Betracht jiezogene Druclcschriften:
Deutsche Patcntschrift Nr. 922 08S;
Hollerith-Nachr., 74, 1937, S. 1022.

Hienu 2 Bla.tt Zeichnungen

www.manaraa.com

38

ZEICIINUNCr.:t IILATT 1 AIISCARETAC: 1. DF3.t:MRER 1960 DAS 1094019
KL.42m 14
INTE r. It... G 06 r

5 If 8 _1 ______
'R

vo.,.·
ent- ~.:

sd\Liiisl.er

0/
13

~onskcLl.&1- 0 Redlcn C1lUL-
3

t \Ic-rk.

*
lCeUa.,.

1 12
Ta.st&llfCLoL 10 11

2
.5chrci.~w&rk

Fi'J.1

• (B)t + 1l . -
'rtf f f f

(Ie Ie Ict ke ICe

k .. ~'" I(K K 0,,"

x: I(l< K Q. "
0,,'

Ie "
..,. T t4

) C. .,. .,. .,.

www.manaraa.com

39

Z£ICH~U:u:t:."'f III.ATT I

£

1> lit (, (X(---t- (X!!1l:t
illg(((~ l!lxC(((x~

)§r 1:l(xxxx)lt
]I()Ii(3'l(It

'IT a 0. CL C ceq rr A.-o.. /, d. d. e (T

)1)1: J()I(Q.." .:: C C (T c-a. C C)II(11(
lIC)I(.c~c.)()1(·

..)I(

Ole

DAS IO'HOII)
KIA2m 14
',.,.£I.UT. "L G 06 f

OS(

--.

www.manaraa.com

40

Z£ICIINUNC£~ DLATT: AUSGARETAC, I. DEZEMDER 1960 DAS 1091019
KI.A2m 14
INT'KNAT. IU.. G 06 r

l-ig.S

Of ~~::::::::::::::::;::=::::======::. . .,.
1+8

--- -- -- -- -- ----
/ ~ HD
(87 Zln L82
\ ~ /
'- -'"

Tig.6

(/- -'r-81

\ 83 Ii. ;--'lk
/ '----------

... -

www.manaraa.com

Rudolf Bayer

R. Bayer, E. McCreight
Organization and Maintenance of Large Ordered Indexes

Acta Informatica, Vol. 1, Pasco 3, 1972
pp. 173-189

www.manaraa.com

Acta Informatica 1,173-189 (1972)
© by Springer-Verlag 1972

Organization and Maintenance of Large Ordered Indexes
R. BAYER and E. MCCREIGHT

Receh-ed September 29, 1971

Summary. Organization and maintenance of an index for a dynamic random
access file is considered. It is assumed that the index must be kept on some pseudo
random access backup store like a disc or a drum. The index organization described
allows retrieval, insertion, and deletion of keys in time proportional to log,.! where I
is the size of the index and k is a device dependent natural number such that the per
formance of the scheme becomes near optimal. Storage utilization is at least 50 %
but generally much higher. The pages of the index are organized in a special data
structure, so-called B-trees. The scheme is analyzed, performance bounds are obtained,
and a near optimal k is computed. Experiments have been performed with indexes
up to 100000 keys. An index of size 15000 (100000) can be maintained with an average
of 9 (at least 4) transactions per second on an IBM 360/44 with a 2311 disc.

1. Introduction

In this paper we consider the problem of organizing and maintaining an
index for a dynamically changing random access file. By an index we mean a
collection of index elements which are pairs (x, at) of fixed size physically adjacent
data items, namely a key x and some associated information at. The key x identifies
a unique element in the index, the associated information is typically a pointer
to a record or a collection of records in a random access file. For this paper the
associated information is of no further interest.

We assume that the index itself is so voluminous that only rather small
parts of it can be kept in main store at one time. Thus the bulk of the index must
be kept on some backup store. The class of backup stores considered are pseudo
random access devices which have a rather long access or wait time-as opposed
to a true random access device like core store-and a rather high data rate once
the transmission of physically sequential data has been initiated. Typical pseudo
random access devices are: fixed and moving head discs, drums, and data cells.

Since the data file itself changes, it must be possible not only to search the
index and to retrieve elements, but also to delete and to insert keys-more
accurately index elements-economically. The index organization described
in this paper always allows retrieval, insertion, and deletion of keys in time
proportional to log" I or better, where I is the size of the index, and k is a device
dependent natural number which describes the page size such that the perform
ance of the maintenance and retrieval scheme becomes near optimal.

In more illustrative terms theoretical analysis and actual experiments show
that it is possible to maintain an index of size 15000 with an average of 9 retrievals,
insertions, and deletions per second in real time on an IBM 360/44 with a 2311
disc as backup store. According to our theoretical analysis, it should be possible
to maintain an index of size 1 ;00000 with at least two transactions per second
on such a configuration in real time.

www.manaraa.com

44

The index is organized in pages of fixed size capable of holding up to 2k
keys, but pages need only be partially filled. Pages are the blocks of information
transferred between main store and backup store.

The pages themselves are the nodes of a rather specialized tree, a so-called
B-tree, described in the next section. In this paper these trees grow and contract
in only one way, namely nodes split off a brother, or two brothers are merged
or "catenated" into a single node. The splitting and catenation processes are
initiated at the leaves only and propagate toward the root. If the root node splits,
a new root must be introduced, and this is the only way in which the height
of the tree can increase. The opposite process occurs if the tree contracts.

There are, of course, many competitive schemes, e.g., hash-coding, for or
ganizing an index. For a large class of applications the scheme presented in this
paper offers significant advantages over others:

i) Storage utilization is at least 50% at any time and should be considerably
better in the average.

ii) Storage is requested and released as the file grows and contracts. There
is no congestion problem or degradation of performance if the storage occupancy
is very high.

iii) The natural order of the keys is maintained and allows processing based
on that order like: find predecessors and successors; search the file sequentially
to answer queries; skip, delete, retrieve a number of records starting from a
given key.

iv) If retrievals, insertions, and deletions come in batches, very efficient
essentially sequential processing of the index is possible by presorting the trans
actions on their keys and by using a simple prep~oing algorithm.

Several other schemes try to solve the same or very similar problems. A VL
trees described in [1J and [2] guarantee performance in time log2 I, but they
are suitable only for a one-level store. The schemes described in [3J and [4] do
not have logarithmic performance. The solution presented in this paper is new
and is related to those described in [1-4J only in the sense that the problem to
be solved is similar and that it uses a data organization involving tree structures.

2. B-Trees
Def. 2.1. Let It?O be an integer, k a natural number. A directed tree T

is in the class T(k, lz) of B-trees if T is either empty (h =0) or has the following
properties:

i) Each path from the root to any leaf has the same length h, also called the
height of T, i.e., It = number of nodes in path.

ii) Each node except the root and the leaves has at least k + 1 sons. The root
is a leaf or has at least two sons.

iii) Each node has at most 2k + 1 sons.

Number of Nodes in B-Trees. Let Nmm and Nm=. be the minimal and maximal
number of nodes in a B-tree TET(k, h). Then

Nmin =1 +2 ((k +1)0 + (k + 1)1 + ... + (k + 1)10-2) = 1 + ~ ((k +1)10-1_1)

www.manaraa.com

45

for h ~ 2. This also holds for h = 1. Similarly one obtains

h-l

Nmax=Y (2k+l)'= 21k ((2k+1)h-1); h~1.
.=0

Upper and lower bounds for the number N(T) of nodes of Te.(k, h) are given by:

N(T)=O ifTe.(k,O); (2.1)

1 + ~ (k + 1)"-1_1) ::;;N (T) ~ 21k ((2k + 1)h-1) otherwise.

Note that the classes. (k, h) need not be disjoint.

3. The Data Structure and Retrieval Algorithm

To repeat, the pages on which the index is stored are the nodes of a B-tree
Te.(k, h) and can hold up to 2k keys. In addition the data structure for the
index has the following properties:

i) Each page holds between k and 2k keys (index elements) except the root
page which may hold between 1 and 2 k keys.

ii) Let the number of keys on a page P, which is not a leaf, be 1. Then P has
1+1 sons.

iii) Within each page P the keys are sequential in increasing order: Xv X2 ,

••• , X I; k ~ 1 ~ 2 k except for the root page for which 1 ~ 1 ~ 2 k. Furthermore,
P contains 1 + 1 pointers Po, PI' ... , PI to the sons of P. On leaf pages these
pointers are undefined. Logically a page is then organized as shown in Fig. 1.

Fig. 1. Organization of a page

The IX, are the associated information in the index element (x" IX.). The triple (x"
IX" P,) or-omitting lXi-the pair (Xi' P,) is also called an entry.

iv) Let P(P;) be the page to which Pi points, let K(p,) be the set of keys on
the pages of that maximal subtree of which PCP;) is the root. Then for the B-trees
considered here the following conditions shall always hold:

(Vy eK (Po)) (y < xJ,
(VyeK(P.))(x.<y < xHl); i =1,2, ... ,1-1,

(VyeK (PI») (Xl <y).

(3·1)

(3·2)

(3·3)

Fig. 2 is an example of a B-tree in T(2, 3) satisfying all the above conditions.
In the figure the IX, are not shown and the page pointers are represented graphi
cally. The boxes represent pages and the numbers outside are page numbers to
be used later.

www.manaraa.com

46

3

\
\ 9 \
\
\ 23 24 25

5 \ 8
~

6 7 I 17 18 19 20 I

13 14 15

Fig. 2. A data structure in T (2, 3) for an index

Retrieval Algorithm. The flowchart in Fig. 3 is an algorithm for retrieving a
key y. Let p, r, s be pointer variables which can also assume the value" undefined"
denoted as u. r points to the root and is u if the tree is empty, s does not serve
any purpose for retrieval, but will be used in the insertion algorithm. Let P(:P)
be the page to whichp is pointing, then Xl' ••• , X; are the keys in P(:P) and Po, ... , PI
the page pointers in P(:P).

The retrieval algorithm is simple logically, but to program it for a computer
one would use an efficient technique, e.g., a binary search, to scan a page.

Cost of Retrieval. Let h be the height of the page tree. Then at most h pages
must be scanned and therefore fetched from backup store to retrieve a key y.
We will now derive bounds for h for a given index of size I. The minimum and
maximum number 1min and 1max of keys in a B-tree of pages in T(k, h) are:

1min =1+k(2 (k+1}~-l -1)=2(k+1)11-1_1

1max =2k ((2k ~~h-1) = (2k + 1)11-1.

This is immediate from (2.1) for h 61. Thus we have as sharp bounds for the
height h:

log2k+l (I +1) ~h ~ 1 + logk+1 (I ~1)
h=O for 1=0.

4. Key Insertion

for 161,

The algorithm in Fig. 4 inserts a single key y into an index described in
Section 3. The variable s is a page pointer set by the retrieval algorithm pointing
to the last page that was scanned or having the value u if the page tree is empty.

www.manaraa.com

P+-Po

P+-Pi

P+-Pl

47

p+-r
s+-u

NO

Fig. 3. Retrieval algorithm

Splitting a Page. If a page P in which an entry should be inserted is already
full. it will be split into two pages. Logically first insert the entry into the sequence
of entries in P-which is assumed to be in main store-resulting in a sequence

Po. (Xl' PI). (x2• P2). ... , (X2k+1' P2k+1)'

Now put the subsequence Po. (Xl' PI)' ... , (Xb Pk) into P and introduce a new
page P' to contain the subsequence

PHI. (XH2' Pk+2)' (XHa • PH3). ... , (X2Hl' P2k+1)'
Let Q be the father page of P. Insert the entry (Xk+1' P'), where P' points to P',
into Q. Thus P' becomes a brother of P.

www.manaraa.com

48

Inserting (Xk+l' P') into Q may, of course, cause Q to split too, and so on,
possibly up to the root. If the splitting page P is the root, then we introduce a
new root page Q containing p, (Xk+l' P') where p points to P and P' to P'.

Note that this insertion process maps B-trees with parameter k into B-trees
with parameter k, and preserves properties (3.1), (3.2). and (3.3).

To illustrate the insertion process. insertion of key 9 into the tree in Fig. 5
with parameter k = 2 results in the tree in Fig. 2.

split page YES
routine
for P(s)

apply retrieval
algorithm for

key y

insert entry
(y, u) in P(s)

* Key y is already in index, take appropriate action.

Fig. 4. Insertion algorithm

www.manaraa.com

49

2

Fig. 5. Index structure in T{2, 2)

S. Cost of Retrievals and Insertions

To analyze the cost of maintaining an index and retrieving keys we need
to know how many pages must be fetched from the backup store into main
store and how many pages must be written onto the backup store. For our analysis
we make the following assumption: Any page, whose content is examined or
modified during a single retrieval, insertion, or deletion of a key, is fetched or
paged out respectively exactly once. It will become clear during the course of
this paper that a paging area to hold h + 1 pages in main store is sufficient to do
this.

Any more powerful paging scheme, like e.g., keeping the root page permanently
locked in main store, will, of tonrse, decrease the number of pages which must
be fetched or paged out. \Ve will not, however, analyze such schemes, although
we have used them in our experiments.

Denote by Imm (Imu.) the minimal (maximal) number of pages fetched, and
by Wmin (wmax) the minimal (maximal) number of pages written.

Cost 01 Retrieval. From the retrieval algorithm it is clear that for retrieving
a single key we get

Imm=1; Im:ax=h; Wmin =Wmax =0.

Cost 01 Insertion. For inserting a single key the least work is required if no
page splitting occurs, then

lmin =h; Wmin =1.

:Most work is required if all pages in the retrieval path including the root page
split into two. Since the retrieval path contains h pages and we have to write
a new root page, we get:

lmax=h; wmax =2h+1.

Note that h always denotes the height of the old tree. Although this worst bound
is sharp, it is not a good measure for the amount of work which must generally
be done for inserting one key.

If we consider an index in which keys are only retrieved or inserted, but no
keys are deleted, then we can derive a bound for the average amount of work
to be done for building an index of I keys as follows:

Each page split causes one (or two if the root page splits) new pages to be
created. Thus the number of page splits occurring in building an index of I items
is bounded by n (1) -1, where n (1) is the number of pages in the tree. Since

www.manaraa.com

50

each page has at least k keys, except the root page which may have only 1, we

get: n(I) ~ 1;1 +1. Each single page split causes at most 2 additional pages

to be written. Thus the average number of pages written per single key insertion
due to page splitting is bounded by

2 2
(n(I) -1)· T < T'

A page split does not require any additional page retrievals. Thus in the average
for an index without deletions we get for a single insertion:

2
f .. =h; w .. <1+T·

6. Deletion Process

In a dynamically changing index it must be necessary to delete keys. The
algorithm of Fig. 6 deletes one key Y from an index and maintains our data
structure properly. It first locates the key, say Yi. To maintain the data structure
properly, Yi is deleted if it is on a leaf, otherwise it must be replaced by the
smallest key in the subtree whose root is P (Pi)' This smallest key is found by
going from P (Pi) along the Po pointers to the leaf page, say L, and taking the
first key in L. Then this key, say Xl' is deleted from L. As a consequence L may
contain fewer than k keys and a catenation or underflow between L and an
adjacent brother is performed.

Catenation. Two pages P and pi are called adiacmt brothers if they have the
same father Q and are pointed to by adjacent pointers in Q. P and pi can be
catenated, if together they have fewer than 2k keys, as follows: The three
pages of the form

Q

I···, (Y;-l' P), (Y;, Pi), (Y;+l' Ph-I) ... , I
p/~ P'

can be replaced by two pages of the form:

Q

/ ... , (Y;-l' P), (Y;+l' P;+l)' .. ·1

lp

www.manaraa.com

51

As a consequence of deleting the entry (Yi' P') from Q it is now possible that Q
contains fewer than k keys and special action must be taken for Q. This process
may propagate up to the root of the tree.

Underflow. If the sum of the number of keys in P and P' is greater than 2k,
then the keys in P and P' can be equally distributed, the process being called
an underflow, as follows:

apply retrieval
algorithm for y

YES

retrieve pages
down to leaf

along Po pointers

replace y by
first key on

leaf page

delete first
key on leaf

NO

YES delete y
from leaf

if necessary,
perform

catenations
and underflow

* The key to be deleted is not in index, take appropriate action.

Fig. 6. Deletion algorithm

www.manaraa.com

52

Perform the catenation between P and P' resulting in too large a P. This
is possible since P is in main store. Now split P "in the middle" as described in
Section 4 with some obvious minor modifications.

Note that underflows do not propagate. Q is modified, but the number of
keys in it is not changed.

To illustrate the deletion process consider the index in Fig. 2. Deleting key 9
results in the index in Fig. 5.

7. Cost of Deletions

For a successful deletion, i.e., if the key y to be deleted is in the index, the
least amount of work is required if no catenations or underflows are performed
and y is in a leaf. This requires:

lmin =h; 7£'min = 1.

If Y is not in a leaf and no catenations or underflows occur, then

I=h; 7£' =2.

A maximal amount of work must be done if all but the first two pages in the
retrieval path are catenated, the son of the root in the retrieval path has an
underflow, and the root is modified. This requires:

lmax =2h -1; 7£'max = h + 1 .

As in the case of the insertion process the bounds obtained are sharp, but very
far apart and assumed rarely except in pathological examples. To obtain a more
useful measure for the average amount of work necessary to delete a key, let us
consider a "pure deletion process" during which all keys in an index J are deleted,
but no keys are inserted.

Disregarding for the moment catenations and underflows we may get 11 =h
and 7£'1 = 2 for each deletion at worst. But this is the best bound obtainable if
one considers an example in which keys are always deleted from the root page.

Each deletion causes at most one underflow, requiring 12 = 1 additional
fetches and 7£'2 = 2 additional writes.

The total number of possible catenations is bounded by n(J) -1, which is

at most I ~ 1 . Each catenation causes 1 additional fetch and 2 additional

writes, which results in an average

Thus in the average we get:

1 (I-i) 1 13=7 -k- <k

2(1-1) 2 7£'3=7 -k- <k'

2 2
7£',. ~7£'1 + 7£'2 +7£'3<2 +2 + k =4 + k'

www.manaraa.com

53

8. Page Overflow and Storage Utilization

In the scheme described so far utilization of back-up store may be as low as
50% in extreme cases-disregarding the root page-if all pages contain only k
keys. This could be improved by avoiding certain page splits.

An overflow between two adjacent brother pages P and P' can be performed
as follows: Assume that a key must be inserted in P and P is already full, but P'
is not full. Then the key"is inserted into the key-sequence in P and an underflow
as described in Section 6 between the resulting sequence and P' is performed.
This avoids the need to split P into two pages. Thus a page will be split only if
both adjacent brothers are full, otherwise an overflow occurs.

In an index without deletions overflows will increase the storage utilization
in the worst cases to about 66 %. If both insertions and deletions occur, then
the storage utilization may of course again be as low as 50%. For most practical
applications, however, storage utilization should be improved appreciably with
overflows.

One could, of course, consider a larger neighborhood of pages than just the
adjacent brothers as candidates for overflows, underflows, and catenations and
increase the minimal storage occupancy accordingly.

Bounds for the cost of insertions for a scheme with overflows are easily derived
as:

fmin =h; wmin =1;

For a pure insertion process one obtains as bounds for the average cost:

It is easy to construct examples in which each insertion causes an overflow,
thus these bounds cannot be improved very much without special assumptions
about the insertion process.

9. Maintenance Cost for Index with Insertions and Deletions

The main purpose of this paper is to develop a data structure which allows
economical maintenance of an index in which retrievals, insertions, and deletions
must be done in any order. We will now derive bounds on the processing cost
in such an environment.

The derivation of bounds for retrieval cost did not make any assumptions
about the order of insertions or deletions, so they are still valid. Also, the minimal
and maximal bounds for the cost of insertions and deletions were derived without
any such assumptions and are still valid. The bounds derived for the average
cost, however, are no longer valid if insertions and deletions are mixed.

The following example shows that the upper bounds for the average cost
cannot be improved appreciably over the upper bounds of the cost derived for
a single retrieval or deletion.

www.manaraa.com

54

Example. Consider the trees T2 in Fig. 2 and T5 in Fig. 5. Deleting key 9 from
Ts leads to T&, and inserting key 9 in T5 leads back to T2. Consider a sequence
of alternating deletions and insertions of key 9 being applied starting with T2 •

Case 1. No page overflows, but only page splits occur:

i) Each deletion of key 9 from T2 requires:
3 retrievals to locate key 9, namely pages 1, 2, 6.
1 retrieval of brother 5 of page 6 to find out that pages 5 and 6 can be
catenated.
2 pages, namely 5 and 2 are modified and must be written. Pages 6 and 3
are deleted from the tree T2 •

Thust=5 andw=2. Butt = 5 =2h-1 =tm:u.andw=2=h-1 =wmax -2.

ii) Each insertion of key 9 into T5 requires:
2 retrievals to locate slot for 9 in page 5.
5 pages must be written, namely 1, 2, 3, ;, 6.
Thus

t=2=h=tmax

w = 5 =2h +1 =wm:u.'

Case 2. Consider a scheme with page overflows.
i) Deletion of key 9 leads to the same results as in Case 1.

ii) Insertion of key 9 requires:
2 retrievals to locate slot for 9 on page 5.
2 retrievals of brothers 4 and 7 of 5 to find out that 5 must be split.
5 pages must be written as in Case 1.
Thus:

t=4=3 h -2 =imax
w=5=2h+1 =wmax '

Analogous examples can be constructed for arbitrary h and k.
From the analysis it is clear that the performance of our scheme depends

on the actual sequence of insertions and deletions. The interference between
insertions and deletions may degrade the performance of the scheme as opposed
to doing insertions or deletions only. But even in the worst cases this interference
degrades the performance at most by a factor of 3.

It is an open question how important this interference is in any actual applica
tions and how relevant our worst case analysis is. Although the derivable cost
bounds are worse, the scheme with overflows performed better in our experiments
than the scheme without overflows.

10. Choice of k

The performance of our scheme depends on the parameter k. Thus care should
be taken in choosing k to make the performance as good as possible.

To obtain a very rough approximation to the performance of the scheme we
make the following assumptions:

www.manaraa.com

55

Re- Insertion Deletion Insertion Insertion Deletion Insertion
trieval in index in index in index in index in index in index

without without without with with with
deletions insertions, deletions, deletions, insertions, deletion,
and with or but with without with or with
without without overflow overflow without overflow
overflows overflows overflows

JIlin /=1 /=/, /=h /=h /=h /=h, . /=h
w=o w=1 w=1 w=1 w=1 w=1 w=1

I=h
t 2

Average as /~h /<h+1+T /;;;;h+2+T /=h /;;;;2h-l /;;;;3h-2
derived in 2 2 2
paper w=o w<I+T w<4+T w;;;;3+T w;;;;2h+t h-l;;;;" w~2h+l

;;;;h+l

max /=h /=h /=2h-l /=3h-2 /=h /=2h-l /=3h-2
w=o W=2h+l w=h+l w=2h+l W=2h+l w=h+l w=2"+1

1 = number of pages fetched h = height of B-tree
w = number of pages written k = parameter of B-tree of pages
I = size of index set II = best upper bound obtainable for w

Fig. 7. Table of costs for a single retrieval, insertion, or deletion of a key

i) The time spent for each page which is written or fetched can be expressed
in the form:

~+,8(2k+1) +" In(lIk +1)

~ fixed time spent per page, e.g., average disc seek time plus fixed CPU
overhead, etc.

,8 transfer time per page entry.
" constant for the logarithmic part of the time, e.g., for a binary search.
11 factor for average page occupancy, 1 ::5:: 11 ~ 2.
We assume that modifying a page does not require moving keys within a

page, but that the necessary channel subcommands are generated to write a
page by concatenating several pieces of information in main store. This is the
reason for our assumption that fetching and writing a page takes the same time.

i) The average number of pages fetched and written per single transaction
in an environment of mixed retrievals, insertions, and deletions is approximately
proportional-see Fig. 7-to h, say ~h. The total time T spent per transaction
can then be approximated by:

T ~ ~h (~+ ,8(2k +1) +" In{vk +1)).

Approximating h itself by: h~ log. 11+1 (1+1) where I is the size of the index,
we get: T ~ Til =~ IOg.1I+1 (I +1) (~+,8{2k +1) +" In{vk +1)}.

Now one easily obtains the minimum of Til if k is chosen such that:

www.manaraa.com

56

Neglecting CPU time, k is a number which is characteristic for the device
used as backup store. To obtain a near optimal page size for our test examples
we assumed IX = 50 ms and p = 90 (Jos. According to the table in Fig. 8 an acceptable
choice should be 64 < k < 128. For reasons of programming convenience we chose
k = 60 resulting in a page size of 120 entries.

k

2.00000E -:- 00
4.00000E + 00
8.00000E + 00
1.60000E + 01
3.20000E + 01
6.40000E + 01
1.28000E + 02
2.56000E + 02
5.12000E -:- 02
1.02400E + 03
2.04800E -:- 03
4.09600E -:- 03
8.192ooE -:- 03
1.63840E -:- 04
3.27680E -:- 04
6.55360E + 04

f(k. 1)

1.59167E+00
7.09437 E + 00
2.25500E + 01
6.33292E + 01
1.65769E + 02
4.13670E+02
9.96831 E + 02
2.33922E + 03
5.37752E+03
1.21625E + 04
2.71506E + 04
5.99647 E + 04
1.31269E + 05
2.85235E + 05
6.15877E+05
1.32258E + 06

f (k. 1.5)

2.39356E + 00
9.16182E -:- 00
2.74591E+01
7.42958E + 01
1.89265E + 02
4.62662E -i- 02
1.09726E + 03
2.54299E + 03
5. 78842E -i- 03
1.29881 E + 04
2.88062E + 04
6.32806E + 04
1.37906E + 05
2.98514E + 05
6.42442E -i- 05
1.37572E + 06

f (k. 2)

3.04718E + 00
1.07750E+01
3.11646E+01
8.23847 E + 01
2.06334E + 02
4.97915 E + 02
1.16911E+03
2.68826E + 03
6.08075 E + 03
1.35748£ + 04
2.99818E + 04
6.56343E + 04
1.42617E+05
3.07938E + 05
6.61292E + 05
1.41342£ + 06

Fig. 8. The function t(k, v} for optimal choice of k

The size of the index which can be stored for k = 60 in a page tree of a certain
height can be seen from Fig. 9.

Height of Minimum
page tree index size

1

2 121
3 7441
4 453961

Maximum
index size

120
14640

1771560
214358880

Fig. 9. Height of page tree and index size

11. Experimental Results
The algorithms presented here were programmed and their performance

measured during various experiments. The programs were run on an IBM 360/44
computer with a 2311 disc unit as a backup store. For the index element size
chosen (14 8-bit characters) and index size generally used (about 10000 index
elements), the average access mechanism delay for this unit is about 50 ms,
after which information transfer takes place at the rate of about 90 (.LS per index
element. From these two parameters, our analysis predicts an optimal page
size (2k) on the order of 120 index elements.

www.manaraa.com

57

The programming included a simple demand paging scheme to take advan
tage of available core storage (about 1250 index elements' worth) and thus to
attempt to reduce the number of physical disc operations. In the following
section by virtual disc read we mean a request to the paging scheme that a certain
disc page be available in core; a virtual disc read will result in a physical disc
read only of there is no copy of the requested disc page already in the paging
area of core storage. A virtual disc write is defined analogously.

At the time of this writing ten experiments had been performed. These ex
periments were intended to give us an idea of what kind of performance to expect,
what kind of storage utilization to expect, and so forth. For us the specification
of an experiment consists of choosing

1) whether or not to pennit overflows on insertion,
2) a number of index elements per page, and
3) a sequence of transactions to be made against an initially empty index.

At several points during the performance of an experiment certain performance
variables are recorded. From these the performance of the algorithms according
to various performance measures can be deduced; to wit

1) % storage utilization
2) average number of virtual disc reads/transaction
3) average number of physical disc reads/transaction
4) average number of virtual disc writes/insertion or deletion
;) average number of physical disc writes/insertion or deletion
6) average number of transactions/second.
We now summarize the experiments. Each experiment was divided into

several phases, and at the end of each of these the performance variables were
measured. Phases are denoted by numbers within parentheses.
E 1: 25 elements/page, overflow pennitted.

(1) 10000 insertions sequential by key,
(2) 50 insertions, 50 retrievals, and 100 deletions uniformly random in

the key space.
E2: 120 elements/page; otherwise identical to E1.
E3: 250 elements/page; otherwise identical to E1.
E4: 120 elements/page, overflow permltted.

(1) 10000 insertions sequential by key,
(2) 1 000 retrievals uniformly random in key space,
(3) 10000 sequential deletions.

E;: 120 elements/page, overflow not pennitted.
(1) 5000 insertions uniformly random in key space,
(2) 1 000 retrievals uniformly random in key space,
(3) 5000 deletions uniformly random in key space.

E 6: Overflow pennitted; otherwise identical to E 5.
E 7: 120 elements/page, overflow pennitted.

(1) 5000 insertions sequential by key,
(2) 6000 each insertions, retrievals, and deletions uniformly random in

key space.

www.manaraa.com

58

E8: 120 elements/page, overflow permitted.
(1) 15000 insertions uniformly random in key space,
(2) 100 each insertions, deletions, and retrievals uniformly random in

key space.

E9: 250 elements/page; otherwise identical to E8.

E 10: 120 elements/page, overflow permitted.
(1) 100000 insertions sequential by key,
(2) 1 000 each insertions, deletions, and retrievals uniformly random in

key space,

(3) 100 group retrievals uniformly random in key space, where a group is
a sequence of 100 consecutive keys (statistics on the basis of 10000
transactions) ,

(4) 10000 insertions sequential by key, to merge uniformly with the
elements inserted in phase (1).

% Stor- VR/T* PR/T VW/I PW/I T/sec
age used orD or D

E1 (1) 99.8 2.2 0 2·3 0.04 66.1
E1 (2) 91.5 4.4 1.62 2.j 1.5 6.6
E2 (1) 99·2 1.0 0 1.0 0.008 94·5
E2 (2) 87.3 2.5 1.15 1.3 1.1 6.7
E3 (1) 97-6 1.0 0 1.0 0.004 100.0
E3 (2) 84.7 2.4 1.08 1.3 1.1 5·2
E4 (1) 99·2 1.0 0 1.0 0.008 94·5
E4 (2) 99·2 2.0 19·5
E4 (3) 2.0 0.01 2.0 0 74.1
E5 (1) 67·1 1.0 0.55 1.0 0.56 17·0
E5 (2) 67.1 2.0 0.83 18.2
E5 (3) 4.0 0.68 2.2 0.65 12.4
E6 (1) 86.7 1.1 0·55 1.1 0.54 17·1
E6 (2) ~6.7 2.0 0.79 24·3
E6 (3) 4.0 0.65 2.2 0.62 13.4
E7 (1) 96.9 1.0 0 1.0 0.008 111.9
E7 (2) 76.8 2.3 0.83 1.3 0.88 13.1
E8 (1) 84.5 1.3 0.87 1.3 0.85 10.1
E8 (2) 83.9 3.7 1.00 3·0 1.00 9.5
E9 (1) 86.4 1.1 0.84 1.0 0.82 8.5
E9 (2) 85.2 2.3 0.94 1.1 0.96 8.2

E10 (1) 99.8 1.9 0 1.9 0.008 91.7
ElO (2) 82.1 4.1 1.94 1.8 1.54 4.2
E10 (3) 82.1 4.0 0.03 75.7
E10 (4) 83.8 2.2 0.10 2.2 0.11 38.0

* This statistic is unnecessarily large for deletions, due to the way deletions were pro-
grammed. To find the necessary number of virtual reads, for sequential deletions subtract
one from the number shown, and for random deletions subtract one and multiply the result
by about 0.5.

www.manaraa.com

59

References
1. Adelson-Velskii, G. M., Landis, E. M.: An information organization algorithm.

DAl.'iSSSR, 146, 263-266 (1 962).
2. Foster, C. C.: Information storage and retrieval using A VL trees. Proc. ACM

20th Nat'I. Conf. 192-205 (t965).
3. Landauer, W. I.: The balanced tree and its utilization in information retrieval.

IEEE Trans. on Electronic Computers, Vol. EC-12, No.6, December 1963.
4. Sussenguth, E. H., Jr.: The use of tree structures for processing files. Comm.

ACM, 6, No.5, May 1963.

Prof. Dr. R. Bayer
Dept. of Computer Science
Purdue University
laiayetie, Ind. 47907
U.S.A.

Dr. E M. McCreight
Palo Alto Research Center
3t80 Porter Drive
Palo Alto, Calif. 94304
U.S.A.

www.manaraa.com

E.F. Codd
A Relational Model of Data for Large Shared Data Banks

Communications of the ACM, Vol. 13 (6), 1970
pp.377-387

www.manaraa.com

A Relational NIodel of Data for
Large Shared Data Banks

E. F. CODD

IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal representation). A prompting service which supplies
such information is not a satisfactory solution. Activities of users
at terminals and most application programs should remain
unaffected when the internal representation of data is changed
and even when some aspects of the external representation
are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.

Existing noninferential, formatted data systems provide users
with tree-structured files or slightly more general network
models of the data. In Section 1, inadequacies of these' models
are discussed. A model based on n-ary relations, a normal
form for data base relations, and the concept of a universal
data sublanguage are introduced. In Section 2, certain opera
tions on relations {other than logical inference} are discussed
and applied to the problems of redundancy and consistency
in the user's model.

KEY WORDS AND PHRASES: data bank, data base, data structure, data
organization, hierarchies of data, networks of data, relations, derivability,
redundancy, consistency, composition, join, retrieval language, predicate
calculus, security, data integrity
CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4.29

www.manaraa.com

64

I. Relational :Model and Normal Form

1.1. INTRODUCTIOX

This paper is cDncerned with the application of ele
mentary relation theory to systems which provide shared
access to large bank5 of formatted data. Except for a paper
by Childs [1], the principal application of relations to data
systems has been to deductive question-answering systems.
Levein and Maron {2} provide numerous references to work
in this area.

In contrast, the problems treated here are those of data
independence-the independence of application programs
and terminal activities from growth in data types and
changes in data representation-and certain kinds of data
inconsistency which are expected to become troublesome
even in nondeductiye systems.

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3, 4] presently in vogue for non
inferential systems. It provides a means of describing data
with its natural structure only-that is, without superim
posing any additional structure for machine representation
purposes. Accordingly, it provides a basis for a high level
data language which will yield maximal independence be
tween programs on the one hand and machine representa
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis for treating derivability, redundancy,
and consistency of relations-these are discU5sed in Section
2. The network model, on the other hand, has spawned a
number of confusions, not the least of which is mistaking
the deriyation of connections for the derivation of rela
tions (see remarks in Section 2 on the "connection trap").

Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted

www.manaraa.com

65

data systems, and also the relative merits (from a logical
standpoint) of competing representations of data within a
single system. Examples of this clearer perspective are
cited in various parts of this paper. Implementations of
systems to support the relational model are not discussed.

1.2. DATA DEPENDE:KCIES IX PRESENT SYSTEMS

The provision of data description tables in recently de·
veloped information systems represents a major advance
toward the goal of data independence [5, 6, 7]. Such tables
facilitate changing certain characteristics of the data repre
sentation stored in a data banle However, the variety of
data representation characteristics which can be changed
without logically impairing some application programs is
still quite limited. Further, the model of data with which
users interact is still cluttered with representational prop
erties, particularly in regard to the representation of col
lections of data (as opposed to individual items). Three of
the principal kinds of data dependencies which still need
to be removed are: ordering dependence, indexing depend
ence, and access path dependence. In some systems these
dependencies are not clearly separable from one another.

1.2.1. Ordering Dependence. Elements of data in a
data bank may be stored in a yariety of ways, some involv
ing no concern for ordering, some permitting each element
to participate in one ordering only, others permitting each
element to participate in several orderings. Let us consider
those existing systems "hich either require or permit data
elements to be stored in at least one total ordering which is
closely associated with the hardware-determined ordering
of addresses. For example, the records of a file concerning
parts might be stored in ascending order by part serial
number. Such systems normally permit application pro
grams to assume that the order of presentation of records
from such a file is identical to (or is a subordering of) the

www.manaraa.com

66

stored ordering. Those application programs which take
advantage of the stored ordering of a file are likely to fail
to operate correctly if for some reason it becomes necessary
to replace that ordering by a different one. Similar remarks
hold for a stored ordering implemented by means of
pointers.

It is unnecessary to single out any system as an example,
because all the well-known information systems that are
marketed today fail to make a clear distinction between
order of presentation on the one hand and stored ordering
on the other. Significant implementation problems must be
soh-ed to provide this kind of independence.

1.2.2. Indexing Dependence. In the context of for
matted data, an index is usually thought of as a purely
performance-oriented component of the. data representa
tion. It tends to improve response to queries and updates
and, at the same time, slow down response to insertions
and deletions. From an informational standpoint, an index
is a redundant component of the data representation. If a
system uses indices at all and if it is to perform well in an
environment with changing patterns of activity on the data
bank, an ability to create and destroy indices from time to
time will probably be necessary. The question then arises:
Can application programs and terminal activities remain
invariant as indices come and go?

Present formatted data. systems take widely different
approaches to indexing. TD MS [7J unconditionally pro
vides indexing on all attributes. The presently released
ve~ion of IMS [5J provides the user ",ith a choice for each
file: a choice between no indexing at all (the hierarchic se
quential organization) or indexing on the primary key
only (the hierarchic indexed sequential organization). In
neither case is the user's application logic dependent on the
existence of the unconditionally provided indices. IDS
[8], however, permits the file designers to select attributes

www.manaraa.com

67

to be indexed and to incorporate indices into the file struc
ture by means of additional chains. Application programs
taking advantage of the performance benefit of these in
dexing chains must refer to those chains by name. Such pro
grams do not operate correctly if these chains are later
removed.

1.2.3. Access Path Dependence. Many of the existing
formatted data systems provide users with tree-structured
files or slightly more general network models of the data.
Application programs developed to work with these sys
tems tend to be logically impaired if the trees or networks
are changed in structure. A simple example follows.

Suppose the data bank contains infornlation about parts
and projects. For each part, the part number, part name,
part description, quantity-on-hand, and quantity-on-order
are recorded. For each project, the project nunlber, project
name, project description are recorded. Whenever a project
makes use of a certain part, the quantity of that part com
mitted to the given project is also recorded. Suppose that
the system requires the user or file designer to declare or
define the data in terms of tree structures. Then, anyone
of the hierarchical structures may be adopted for the infor
mation mentioned above (see Structures 1-5).

Structure 1. Projects Subordinate to Parts
Segmal

PART
Fields

part #
part name
part description
quantity-on-hand
quantity-on-order

PROJECT proj ect 11-

project name
project description
quantity committed

www.manaraa.com

68

Structure 2. Parts Subordinate to Projects
Fil. S.gmem Fields

F PROJECT proj ect ff
project name
project description

PART part ff
part name
part description
quantity-on-hand
quantity-on-order
quantity committed

Structure 3. Parts and Projects as Peers
Commitment Relationship Subordinate to Projects
Fil. Seg1'M1ll Fields

F PART part ff
part name
part description
quantity-on-hand
quantity-on-order

G PROJECT project #
proj ect name
project description

PART part ff
quantity committed

Structure 4. Parts and Projects as Peers
Commitment Relationship Subordinate to Parts
File Segment Fields

F PART part #
part description
quantity-on-hand
quantity-on -order

PROJECT project if
quantity committed

G PROJECT project #-
project name
project description

www.manaraa.com

69

Structure 5. Parts, Projects, and
Commitment Relationship as Peers

File Segment Fields

F PART part #
part name
part description
quantity-on-hand
quantity-on-order

G PROJECT proj ect #
proj ect name
project description

H COMMIT part #
project If
quantity committed

Now, consider the problem of printing out the part
number, part name, and quantity committed for every part
used in the project whose project name is "alpha." The
following observations may be made regardless of which
available tree-oriented information system is selected to
tackle this problem. If a program P is developed for this
problem assuming one of the five structures above-that
is, P makes no test to determine which structure is in ef
fect-then P will fail on at least three of the remaining
structures. More specifically, if P succeeds with structure 5,
it will fail with all the others; if P succeeds with structure 3
or 4, it will fail with at least 1, 2, and 5; if P succeeds with
1 or 2, it will fail 'with at least 3, 4, and 5. The reason is
simple in each case. In the absence of a test to determine
which structure is in effect, P fails because an attempt is
made to exceute a reference to a nonexistent file (available
systems treat this as an error) or no attempt is made to
execute a reference to a file containing needed information.
The reader who is not convinced should develop sample
programs for this simple problem.

www.manaraa.com

70

Since, in general, it is not practical to develop applica
tion programs which test for all tree structurings permitted
by the system, these programs fail when a change in
structure becomes necessary.

Systems which provide users with a network model of
the data run into similar difficulties. In both the tree and
network cases, the user (or his program) is required to
exploit a collection of user access paths to the data. It does
not matter whether these paths are in close correspondence
with pointer-defined paths in the stored representation-in
IDS the correspondence is extremely simple, in TDMS it is
just the opposite. The consequence, regardless of the stored.
representation, is that terminal activities and progranls be
come dependent on the continued existence of the u~er
access paths.

One solution to th15 is to adopt the policy that once a
user access path is defined it will not be made obsolete un
til all application programs using that path have become
obsolete. Such a policy is not practical, because the number
of access paths in the total model for the comnlunity of
users of a data bank would eventually become excessiyely
large.

1.3. A RELATIORli. VIEW OF DATA

The term relation 15 used here in its accepted mathe
nlatical sense. Given sets S1 , 82 , ••• ,Sn (not necessarily
distinct), R is a relation on these n sets if it is a set of n
tuples each of which has its first element fronl Sl, its
second element from S~, and so on.1 We shall refer to Sj as
the jth d{)main of R. As defined above, R is said to have
degree n. Relations of degree 1 are often called unary, de
gree 2 binary, degree 3 ternary, and degree n n-ary.

1 More concisely, R is a subset of the Cartesian product S1 X
82 X ... X Sn.

www.manaraa.com

71

For expository reasons, we shall frequently make use of
an array representation of relations, but it nlust be re
membered that this particular representation is not an es
sential part of the relational view being expounded. An ar
ray which represents an n-ary relation R has the following
properties:

(1) Each row represents an n-tuple of R.
(2) The ordering of rows is immaterial.
(3) All rows are distinct.
(4) The ordering of columns is significant-it corre

sponds to the ordering 8 1 , 8 2 , ••• , 8n of the do
mains on which R is defined (see, however, remarks
below on domain-ordered and domain-unordered
relations) .

(5) The significance of each column is partially con
veyed by labeling it with the name of the corre
sponding domain.

The example in Figure 1 illustrates a relation of degree
4, called supply, which reflects the shipments-in-progress
of parts from specified suppliers to specified projects in
specified quantities.

supply (supplier part project quantify)

1 2 5 Ii
1 3 5 23
2 3 7 9
2 7 5 4:
4 1 1 12

FIG. l. A relation of degree 4

One might ask: If the columns are labeled by the name
of corresponding domains, why should the ordering of col
umns matter? As the example in Figure 2 shows, two col
umns may have identical headings (indicating identical
domains) but possess distinct meanings with respect to the
relation. The relation depicted is called component. It is a

www.manaraa.com

72

component (part part quantity)

1 a 9
2 a 7
3 5 2
2 6 12
3 6 3
4 - 1 ,
6 - 1 I

FIG. 2. A relation with two identical domains

ternary relation, whose first two donlains are called part
and third domain is called quantity. The meaning of com
ponent (x, y, z) is that part x is an immediate component
(or subassembly) of part y, and z units of part x are needed
to a.."Semble one unit of part y. It is a relation which plays
a critical role in the parts e}..-plosion problem.

It ~ a remarkable fact that seyeral existing information
systelD.5 (chiefly those based on tree-structured files) fail
to provide data representations for relations which have
two or more identical domains. The present version of
I~IS. i360 [5] is an example of such a systenl.

The totality of data in a data bank may be viewed as a
collection of time-varying relations. These relations are of
assorted degrees. As time progresses, each n-ary relation
may be subject to insertion of additional n-tuples, deletion
of existing ones, and alteration of components of any of its
exk-ting n-tuples.

In many commercial, governmental, and scientific data
banks, however, some of the relations are of quite high de
gree (a degree of 30 is not at all uncommon). Users should
not normally be burdened with remembering the domain
ordering of any relation (for example, the ordering supplier,
then part, then project, then quantity in the relation supply).
Accordingly, we propose that users deal, not with relations
which are domain-ordered, but ",-ith relationships which are

www.manaraa.com

73

their domain-unordered counterparts.2 To accomplish this,
domains must be uniquely identifiable at least within any
given relation, without using position. Thus, where there
are two or more identical domains, we require in each case
that the domain name be qualified by a distinctive role
name, which serves to identify the role played by that
domain in the given relation. For example, in the relation
component of Figure 2, the first domain part might be
qualified by the role name sub, and the second by super, so
that users could deal with the relationship component and
its domains-sub.part super.part, quantity-without regard
to any ordering between these domains.

To sum up, it is proposed that most users should interact
with a relational model of the data consisting of a collection
of time-varying relationships (rather than relations). Each
user need not know more about any relationship than its
name together with the names of its domains (role quali
fied whenever necessary). 3 Even this information might be
offered in menu style by the system (subject to security
and privacy constraints) upon request by the user.

There are usually many alternative ways in which a re
lational model may be established for a data banle In
order to discuss a preferred way (or normal form), we
must first introduce a few additional concepts (active
domain, primary key, foreign key, nonsimple domain)
and establish some links with terminology currently in use
in information systems programming. In the remainder of
this paper, we shall not bother to distinguish between re-

2 In mathematical terms, a relationship is an equivalence class of
those relations that are equivalent under permutation of domains
(see Section 2.1.1).
3 Naturally, as with any data put into and retrieved from a com
puter system, the user will normally make far more effective use
of the data if he is aware of its meaning.

www.manaraa.com

74

lations and relationships except where it appears advan
tageous to be explicit.

Consider an example of a data bank which includes rela
tions concerning parts, projects, and suppliers. One rela
tion called part is defined on the following domains:

(1) part number
(2) part name
(3) part color
(4) part weight
(5) quantity on hand
(6) quantity on order

and possibly other domains as well. Each of these domains
is, in effect, a pool of values, some or all of which may be
represented in the data bank at any instant. Wbile it is
conceivable that, at some instant, all part colors are pres
ent, it is unlikely that all possible part weights, part
names, and part numbers are. We shall call the set of
values represented at some instant the active domain at that
instant.

Normally, one domain (or combination of domains) of a
given relation has values which uniquely identify each ele
ment (n-tuple) of that relation. Such a domain (or com
bination) is called a primary key. In the example above,
part number would be a primary key, while part color
would not be. A primary key is nonredundant if it is either
a simple domain (not a combination) or a combination
such that none of the participating simple domains is
superfluous in uniquely identifying each element. A rela
tion may possess more than one nonredundant primary
key. This would be the case in the example if different parts
were always given distinct names. Whenever a relation
has two or more nonredundant primary keys, one of them
is arbitrarily selected and called the primary key of that re
lation.

www.manaraa.com

75

A common requirement is for elements of a relation to
cross-reference other elements of the same relation or ele
ments of a different relation. Keys provide a user-oriented
means (but not the only means) of expressing such cross
references. We shall call a domain (or domain combina
tion) of relation R a foreign key if it is not the primary key
of R but its elements are values of the primary key of some
relation S (the possibility that S and R are identical is not
excluded). In the relation supply of Figure 1, the combina
tion of supplier, part, project is the primary key, while each
of these three domains taken separately is a foreign key.

In previous work there has been a strong tendency to
treat the data in a data bank as consisting of two parts, one
part consisting of entity descriptions (for example, descrip
tions of suppliers) and the other part consisting of rela
tions between the various entities or types of entities (for
example, the supply relation). This distinction is difficult
to maintain when one may have foreign keys in any rela
tion whatsoever. In the user's relational model there ap
pears to be no advantage to making such a distinction
(there may be some advantage, however, when one applies
relational concepts to machine representations of the user's
set of relationships).

So far, we have discussed examples of relations which are
defined on simple domains-domains whose elements are
atomic (nondecomposable) values. N onatomic values can
be discussed within the relational framework. Thus, some
domains may have relations as elements. These relations
may, in turn, be defined on nonsimple domains, and so on.
For example, one of the domains on which the relation em
ployee is defined might. be salary history. An element of the
salary history domain is a binary relation defined on the do
main date and the domain salary. The salary history domain
is the set of all such binary relations. At any instant of time
there are as many instances of the salary history relation

www.manaraa.com

76

in the data bank as there are employees. In contrast, there
is only one instance of the employee relation.

The terms attribute and repeating group in present data
base terminology are roughly analogous to simple domain
and nonsimp1e domam, respectively. Much of the confu...c::ion
in present terminology is due to failure to distinguish be
tween type and instance (as in "record") and between
components of a user model of the data on the one hand
and their machine representation counterparts on the
other hand (again, we cite "record" as an example).

1.4. NORMAL F OR.'!

A relation whose domains are all simple can be repre
sented in storage by a two-dimensional column-homo
geneous array of the kind discussed above. Some more
complicated data structure is necessary for a relation with
one or more nonsimple domains. For this reason (and others
to be cited below) the possibility of eliminating nonsimple
domains appears worth investigating.4 There is, in fact, a
very simple elimination procedure, which we shall call
normalization.

Consider, for example, the collection of relations ex
hibited in Figure 3 (a). Job history and children are non
simple domains of the relation employee. Salary history is a
nonsimple domain of the relation job history. The tree in
Figure 3 (a) shows just these interrelationships of the non
simple domajns.

Normalization proceeds as follows. Starting with the re
lation at the top of the tree, take its primary key and ex
pand each of the immediately subordinate relations by
inserting this primary key domain or domain combination.
The primary key of each expanded relation consists of the
primary key before expansion augmented by the primary

, M. E. Sanko of IBM, San Jose, independently' recognized the
desirability of eliminating nonsimple domains.

www.manaraa.com

77

employee

I
)

I
jobhistory children

I
salaryhistory

employee (man#, name, birthdate, jobhistory, children)
jobhistory (jobdate, title, salaryhistory)
salaryhistory (salarydate, salary)
children (childname, birthyear)

FIG. 3(a). Unnormalized set

employee' (man#, name, birthdate)
jobhistory' (man#, ;"obdate, title)
salaryhistory' (man#, ;"obdate, salarydate, salary)
children' (man#, childname, birthyear)

FIG. 3(b). Normalized set

key copied down from the parent relation. Now, strike out
from the parent relation all nonsimple domajns, remove the
top node of the tree, and repeat the same sequence of
operations on each remaining subtree.

The result of normalizing the collection of relations in
Figure 3 (a) is the collection in Figure 3 (b). The primary
key of each relation is italicized to show how such keys
are expanded by the normalization.

If nornlalization as described above is to be applicable,
the unnormalized collection of relations mu..."ii satisfy the
following conditions:

(1) The graph of interrelationships of the nonsimple
domains is a collection of trees.

(2) X 0 primary key has a component domain which is
nonsimple.

www.manaraa.com

78

The writer knows of no application which would require
any relaxation of these conditions. Further operations of a
normalizing kind are possible. These are not discussed in
this paper.

The simplicity of the array representation which becomes
feasible when all relations are cast in normal form is not
only an advantage for storage purposes but also for com
munication of bulk data between systems which use widely
different representations of the data. The communication
form would be a suitably compressed version of the array
representation and would have the follo"'ing advantages:

(1) It would be devoid of pointers (address-valued or
displacement-valued) .

(2) It would avoid all dependence on hash addressing
schemes.

(3) It would contain no indices or ordering lists.
If the user's relational model is set up in normal form,

names of items of data in the data bank can take a simpler
form than would otherwise be the case. A general name
would take a form such as

R (g).r.d

where R is a relational name; g is a generation identifier
(optional) ; r is a role name (optional); d is a domain name.
Since g is needed only when several generations of a given
relation exist, or are anticipated to exist, and r is needed
only when the relation R has two or more domains named
d, the simple form R.d will often be adequate.

1.5. SOlIE LINGUISTIC AsPECTS

The adoption of a relational model of data, as described
above, permits the development of a universal data sub
language based on an applied predicate calculus. A first
order predicate calculus suffices if the collection of relations
is in normal form. Such a language would provide a yard-

www.manaraa.com

79

stick of linguistic power for all other proposed data lan
guages, and would itself be a strong candidate for embed
ding (with appropriate syntactic modification) in a variety
of host languages (programming, command- or problem
oriented). While it is not the purpose of this paper to
describe such a language in detail, its salient features
would be as follows.

Let us denote the data sublanguage by R and the host
language by H. R permits the declaration of relations and
their domajns. Each declaration of a relation identifies the
primary key for that relation. Declared relations are added
to the system catalog for use by any members of the user
community who have appropriate authorization. H per
mits supporting declarations which indicate, perhaps less
permanently, how these relations are represented in stor
age. R permits the specification for retrieval of any subset
of data from the data. bank. Action on such a retrieval re
quest is subject to security constraints.

The universality of the data sublanguage lies in its
descriptive ability (not its computing ability). In a large
data bank each subset of the data has a very large number
of possible (and sensible) descriptions, even when we as
sume (as we do) that there is only a finite set of function
subroutines to which the system has access for use in
qualifying data for retrieval. Thus, the class of qualification
expressions which can be used in a set specification must
have the descriptive power of the class of well-formed
formulas of an applied predicate calculus. It is well known
that to preserve this descriptive power it is unnecessary to
express (in whatever syntax is chosen) every formula of
the selected predicate calculus. For example, just those in
prenex normal form are adequate [9].

Arithmetic functions may be needed in the qualification
or other parts of retrieval statements. Such functions can
be defined in H and invoked in R.

www.manaraa.com

80

A set so specified may be fetched for query purposes
only, or it may be held for possible changes. Insertions take
the form of adding new elements to declared relations with
out regard to any ordering that may be present in their
machine representation. Deletions which are effective for
the community (as opposed to the individual user or sub
communiti~) take the form of remoying elements from de
clared relations. Some deletions and updates may be trig
gered by others, if deletion and update dependencies be
tween specified relations are declared in R.

One important effect that the view adopted toward data
has on the language used to retrieve it is in the naming of
data elements and sets. Some aspects of this haye been dis
cussed in the previous section. 'Vith the usual network
view, users will often be burdened with coining and using
more relation names than are absolutely necessary, since
names are a5sociated \\1.th paths (or path types) rather
than with relations.

Once a u~er is aware that a certain relation is st.ored, he
,,-ill expect to be able to exploit5 it using any combination
of its arguments as "knowns" and the remaining argu
ments as "unkno'wns," because the information (like
Everest) is there. This is a system feature (missing from
many current information systems) which we shall call
(logically) symmetric exploitation of relatioIl5. X aturally,
symmetry in performance is not to be expected.

To support symmetric exploitation of a single binary re
lation, two directed paths are needed. For a relation of de
gree n, the number of paths to be nanled and controlled is
n factorial.

Again, if a relational view is adopted in which every n
ary relation (n > 2) has to be expressed by the user as a
nested expression involving only binary relations (see

i Exploiting a relation includes query, update, and delete.

www.manaraa.com

81

Feldman's LEAP System [10], for example) then 2n - 1
names have to be coined instead of only n + 1 with direct
n-ary notation as described in Section 1.2. For example, the
4-ary relation supply of Figure 1, which entails 5 names in
n-ary notation, would be represented in the form

P (supplier, Q (part, R (project, quantity)))

in nested binary notation and, thus, employ 7 names.
A further disadvantage of this kind of expression is its

asynlnletry. Although this asymmetry does not prohibit
synlmetric exploitation, it certainly makes some bases of
interrogation very awkward for the user to express (cono:
sider, for example, a query for those parts and quantities
related to certain given projects via Q and R).

1.6. EXPRESSIBLE, NAMED, A.."\"D STORED RELATIONS

Associated with a data bank are two collections of rela
tions: the named set and the expressible set. The named set
is the collection of all those relations that the community of
115ers can identify by means of a simple name (or identifier).
A. relation R acquires membership in the named set when a
suitably authorized user declares R; it loses membership
when a suitably authorized user cancels the declaration of
R.

The expressible set is the total collection of relations that
can be designated by expressions in the data language. Such
expressions are constructed from simple names of relations
in the named set; names of generations~ roles and domains;
logical connectives; the quantifiers of the predicate calcu-
1115:6 and certain constant relation symbols such as =, >.

(j Because each relation in a practical data bank is a finite set at
every instant of time, the existential and universal quantifiers
can be expressed in terms of a function that counts the number of
elements in any finite set.

www.manaraa.com

82

The named set is a subset of the expressible set-usually a
very small subset.

Since some relations in the named set may be time-inde
pendent combinations of others in that set, it is useful to
cOI15ider associating 'with the named set a collection of
statements that define these time-independent constraints. "e shall postpone further discussion of this until we have
introduced several operations on relatioIl5 (see Section 2).

One of the major problenlS confronting the designer of a
data system which is to support a relational model for its
users is that of determining the class of stored representa
tiOI15 to be supported. Ideally, the variety of permitted
data representations should be just adequate to cover the
spectrum of performance requirements of the total col
lection of installations. Too great a variety leads to un
necessary overhead in storage and continual reinterpreta
tion of descriptions for the structures currently in effect.

For any selected class of stored representations the data
system must provide a means of translating user requests
expressed in the data language of the relational model into
corresponding-and efficient-actions on the current
stored representation. For a high level data language this
presents a challenging design problem. Nevertheless, it is a
problem which must be solved-as more users obtain con
current access to a large data bank, responsibility for pro
viding efficient response and throughput shifts from the
individual user to the data system.

2. Redundancy and Consistency

2.1. OPERATIOXS ox RELATIONS

Since relations are sets, all of the usual set operations are
applicable to thenl. Nevertheless, the result may not be a
relation; for exanlple, the union of a binary relation and a
ternary relation is not a relation.

www.manaraa.com

83

The operations discussed below are specifically for rela
tions. These operations are introduced because of their key
role in deriving relations from other relations. Their
principal application is in noninferential information sys
tems-systems which do not provide logical inference
services-although their applicability is not necessarily
destroyed when such services are added.

Most users would not be directly concerned with these
operation..~. Information systems designers and people con
cerned with data bank control should, however, be thor
oughly familiar with them.

2.1.1. Permutation. A. binary relation has an arr-a.y
representation with two columns. Interchanging these col
umns yields the converse relation. More generally, if a
permutation is applied to the columns of an n-ary relation,
the resulting relation is said to be a permutation of the
given relation. There are, for example, 4! = 24 permuta
tions of the relation supply in Figure 1, if we include the
identity permutation which leaves the ordering of columns .
unchanged.

Since the user's relational model consists of a collection
of relationships (domain-unordered relations), permuta.
tion is not relevant to such a model considered in isolation.
It is, however, relevant to the consideration of stored
representations of the model. In a system which provides
symmetric exploiiation of relations, the set of queries
answerable by a stored relation is identical to the set
answerable by any permutation of that relation. Although
it is logically unnecessary to store both a relation and some·
permutation of it, performance considerations could make
it advisable.

2.1.2. Projection. Suppose now we select certain col
umns of a relation (striking out the others) and then re
move from the resulting array any duplication in the rows.
The final array represents a relation which is said to be a.
projection of the given relation.

www.manaraa.com

84

A selection operator 7r is used to obtain any desired
permutation, projection, or combination of the two opera
tions. Thus, if L is a list of 1c indices7 L = ii, iz , ••• , i1c
and R is an n-ary relation (n > k), then TtL (R) is the k-ary
relation whose jth column is column i; of R (j = 1,2, ... ,k)
except that duplication in resulting rows is removed. Con
sider the relation supply of Figure 1. A permuted projection
of thi5 relation is exhibited in Figure 4. X ote that, in this
particular case, the projection has fewer n-tuples than the
relation from which it is derived.

2.1.3. Join. Suppose we are giyen two binary rela
tions, which have some domain in common. Under what
circumstances can we combine these relations to form a
ternary relation which preserves all of the information in
the given relations?

The example in Figure 5 shows two relations R, S, which
are joinable without loss of information, while Figure 6
shows a join of R with S. A binary relation R is joinable
with a binary relation S if there exists a ternary relation U
such that 7r12 (U) = Rand 7r23 (U) = S. Any such ternary
relation is called a join of R with S. If R, S are binary rela
tions such that 7r2(R) = 7rl (S), then R is joinable with S.
One join that always exists in such a case is the natural
join of R with S defined by

R.S = {(a, b,c):R(a, b) 1\ S(b,c)}
where R (a, b) has the value true if (a, b) is a member of R
and similarly for S (b, c). It is immediate that

7r12 (R.S) = R

and

"1 When dealing with relationships, we use domain names (role
qualified whenever necessary) instead of domain positions.

www.manaraa.com

85

1131 (supply) (:project supplier)

5 1
5 2
1 4
7 2

FIG. 4. A permuted projection of the relation in Figure 1

R (supplier part) S (:part project)

1 1 1 1
2 1 1 2
2 2 2 1

FIG. 5. Two joinable relations

R*S (suppUer

1
1
2
2
2

part

1
1
1
1
2

project)

1
2
1
2
1

FIG. 6. The natural join of R with S (from Figure 5)

u (supplier

1
2
2

part

1
1
2

project)

2
1
1

FIG. 7. Another join of R with S (from Figure 5)

Note that the join shown in Figure 6 is the natural join
of R with S from Figure 5. Another join is shown in Figure
7.

Inspection of these relations reveals an element (ele
ment 1) of the domain part (the domain on which the join

www.manaraa.com

86

is to be made) with the property that it possesses more
than one relative under R and also under S. It is this ele
ment which gives rise to the plurality of joins. Such an ele
ment in the joining domain is called a point of ambiguity
with respect to the joining of R with S.

If either '11"21 (R) or S is a function,S no point of ambiguity
can occur in joining R with S. In such a case, the natural
join of R with S is the only join of R with S. Note that the
reiterated qualification "of R 'with S" is necessary, because
8 might be joinable with R (as well as R with 8), and this
join would be an entirely separate consideration. In Figure
5, none of the relations R, '11"21 (R), s, '11"2l(8) is a function.

Ambiguity in the joining of R with 8 can sometimes be
resolved by means of other relations. Suppose we are given,
or can derive from sources independent of Rand S, a rela
tion T on the dOIDajns project and supplier with the follow
ing properties:

(1) 1r1(T) = '1I"2(S),

(2) 1r2(T) = '1I"l(R),

(3) T(j, s) --+ 3p(R(S, p) 1\ S(p,j)),

(4) R(s, p) --+ 3j(S(P,j) 1\ T(j, s)),

(5) S(p,j) --+ 3s(T(J, s) 1\ R(s, p)),

then we may form a three-way join of R, S, T; that is, a
ternary relation such that

'11"12 (U) = R, '11"23 (U) = 8, ?r31 (U) = T.

Such a join will be called a cyclic 3-join to distinguish it
from a linear 3-join which would be a quaternary relation
V such that

'11"l2 (V) = R, '11"23 (V) = S, ?r34 (V) = T.

8 A function is a binary relation, which is one-one or many-one,
but not one-many.

www.manaraa.com

87

R (8 p) S (p j) T (j s)

1 a a d d 1
2 a a e d 2
2 b b d e 2

b e e 2

FIG. 8. Binary relations with a plurality of cyclic 3-joins

U (8 P j) U' (8 P j)

1 a d 1 a d
2 a e 2 a d
2 b d 2 a e
2 b e 2 b d

2 b e

FIG. 9. Two cyclic 3-joins of the relations in Figure 8

While it is possible for more than one cyclic 3-join to exist
(see Figures 8, 9, for an example), the circumstances under
which this can occur entail much more severe constraints
than those for a plurality of 2-joins. To be specific, the re
lations R, S, T must possess points of ambiguity with
respect to joining R with S (say point x), S with T (say
y), and T with R (say z), and, furthermore, y must be a
relative of x under S, z a relative of y under T, and x a
relative of z under R. Note that in Figure 8 the points
x = a; y = d; z = 2 have this property.

The natural linear 3-join of three binary relations R, S,
T is given by

R.S.T = {(a, b, e, d):R(a, b) /\ S(b, e) /\ T(e, d)}

'Where parentheses are not needed on the left-hand side be
cause the natural 2-join (*) is associative. To obtain the
cyclic counterpart, we introduce the operator 'Y which pro
duces a relation of degree n - 1 from a relation of degree n

www.manaraa.com

88

by tying its ends together. Thus, if R is an n-ary relation
(n > 2), the tie of R is defined by the equation

'Y (R) = {(aI, ll2, ••• , lln-I):R (aI, ll2, ••• , an-I, an)
A al = an}.

'Ye may now represent the natural cyclic 3-join of R, S, T
by the expression

Extension of the notions of linear and cyclic 3-join and
their natural counterparts to the joining of n binary rela
tions (where n > 3) is obvious. A few words may be ap
propriate, however, regarding the joining of relations which
are not necessarily binary. Consider the case of two rela
tions R (degree r), S (degree s) which are to be joined on
p of their domains (p < r, p < s). For simplicity, sup
pose these p domains are the last p of the r domains of R,
and the first p of the s domains of S. If this were not so, we
could always apply appropriate permutations to make it
so. Now, take the Cartesian product of the first r-p do
mains of R, and call this new domain A. Take the Car
tesian product of the last p domains of R, and call this B.
Take the Cartesian product of the last s-p domains of S
and call this C.

We can treat R as if it were a binary relation on the
domains A, B. Similarly, we can treat S as if it were a bi
nary relation on the domains B, C. The notions of linear
and cyclic 3-join are now directly applicable. A similar ap
proach can be taken with the linear and cyclic n-joins of n
relations of assorted degrees.

2.1.4. Composition. The reader is probably familia.r
with the notion of composition applied to functions. We
shall discuss a generalization of that concept and apply it
first to binary relations. Our definitions of composition

www.manaraa.com

89

and composability are based very directly on the definitions
of join and joinability given above.

Suppose we are given two rela.tions R, S. T is a com
position of R with S if there exists a join U of R with S such
that T = 71"13 (U). Thus, two rela.tions are composable if
and only if they are joinable. However, the existence of
more than one join of R with S does not imply the existence
of more than one composition of R with S.

Corresponding to the natural join of R with S is the
natural composition9 of R with S defined by

R·S = 1r13(R*S).

Taking the relations R, S from Figure 5, their natural com
position is exhibited in Figure 10 and another composition
is exhibited in Figure 11 (derived from the join exhibited
in Figure 7).

R·S (project supplier)

1 1
1 2
2 1
2 2

FIG. 10. The natural composition of R with S (from Figure 5)

T (project
1
2

supplier)
2
1

FIG. 11. Another composition of R with S (from Figure 5)

When two or more joins exist, the number of distinct
compositions may be as few as one or as many as the num
ber of distinct joins. Figure 12 shows an example of two
relations which have several joins but only one composition .

• Other writers tend to ignore compositions other than the na
tural one, and accordingly refer to this particular composition as
the composition-see, for example, Kelley's "General Topology."

www.manaraa.com

90

R (supplier part) S (part project)

1 a & g
1 b b f
1 c c f
2 c c g
2 d d g
2 e e f

FIG. 12. Many joins, only one composition

Xote that the ambiguity of point c is lost in composing R
with S, because of unambiguous associations made via the
points a, b, d, e.

Extension of composition to pairs of relations which are
not necessarily binary (and which may be of different de
grees) follows the same pattern as extension of pairwise
joining to such relations.

A. lack of understanding of relational composition has led
several systems designers into what may be called the
ccmnection trap. This trap may be described in terms of the
following example. Suppose each supplier description is
linked by pointers to the descriptions of each part supplied
by that supplier, and each part description is similarly
linked to the descriptions of each project which uses that
part. A conclusion is now drawn which is, in general, er
roneous: namely that, if all possible paths are followed from
a given supplier via the parts he supplies to the projects
u...~g those parts, one will obtain a valid set of all projects
supplied by that supplier. Such a conclusion is correct
only in the very special case that the target relation be
tween projects and suppliers is, in fact, the natural com
position of the other two relations-and we must normally
add the phrase "for all time," because this is usually im
plied in claims concerning path-following techniques.

www.manaraa.com

91

2.1.5. Restriction. A subset of a relation is a relation.
One way in which a relation S may act on a relation R to
generate a subset of R is through the operation restriction
of R by S. This operation is a generalization of the restric
tion of a function to a subset of its domain, and is defined
as follows.

Let L, };[be equal-length lists of indices such that
L = iI, ~, ... , i~, M = jl, j2, ... ,jA: where k < degree
of Rand k < degree of S. Then the L, M restriction of R by
8 denoted RLIM8 is the ma.-nmal subset R' of R such that

'KL(R') = 'KAI(S).

The operation is defined only if equality is applicable be
tween elements of 1i'A (R) on the one hand and ril. (8) on
the other for all h = 1, 2, ... , k.

The three rela.tions R, 8, R' of Figure 13 satisfy the equa
tion R' = R l2 .3)1(1,2)S.

R (a

1
2
2
2
2

p j)
& A
& A
a B
b A
b B

FIG. 13.

S {p j>

& A
c B
b B

R' (8 P j)

1 & A
2 a A
2 b B

Example of restriction

We are now in a. position to consider various applications
of these operations on relations.

2.2. REDUNDANCY
Redundancy in the named set of relations must be dis

tinguished from redundancy in the stored set of representa
tions. We are primarily concerned here with the former.
To begin with, we need a precise notion of derivability for
relations.

Suppose 8 is a. collection of operations on relations and
each operation has the property that from its operands it

www.manaraa.com

92

yields a unique relation (thus natural join is eligible, but
join is not). A relation R is 8-derivable from a set S of rela
tions if there exists a sequence of operations from the col·
lection 8 which, for all time, yields R from members of S.
The phrase "for all time" is present, because we are dealing
with time-varying relations, and our interest is in derivabil·
ity which holds over a significant period of time. For the
named set of relationships in noninferential systems, it ap·
pears that an adequate collection 81 contains the following
operations: projection, natural join, tie, and restriction.
Permutation is irrelevant and natural composition need
not be included, because it is obtainable by taking a. natural
join and then a projection. For the stored set of representa·
tiona, an adequate collection 82 of operations would include
permutation and additional operations concerned with sub·
setting and merging relations, and ordering and connecting
their elements.

2.2.1. Strong Redundancy. A set of relations is strangly
redundant if it contains at least one relation tha.t possesses
a. projection which is deriva.ble from other projections of
relations in the set. The following two examples are in·
tended to explain why strong redundancy is defined this
way, and to demonstrate its practical use. In the first ex
ample the collection of relations consists of just the follow
ing relation:

employee (serial #, name, manager#, managername)

with serial# as the primary key and manager# as a foreign
key. Let us denute the active domain by ~t, and suppose
that

~t (manager#) C Il t (serial#)

and

~t (managername) C ~t (name)

www.manaraa.com

93

for a.Il time t. In this case the redundancy is obvious: the
domain managername is unnecessary. To see that it is a
strong redundancy as defined above, we observe that

11"34 (employee) = r12 (employee)11111"3 (employee).
In the second example the collection of relations includes a
relation S describing suppliers with primary key &#, a re
lation D describing departments with primary key d#, a
relation J describing projects with primary key iff, and the
following relations:

P (&#, dff, ...), Q (sII, iff, ...), R (d#, iff, ...),
where in each case ... denotes domains other than sit, d#,
iff. Let us suppose the following condition (J is known to
hold independent of time: supplier 8 supplies department
d (relation P) if and only if supplier 8 supplies some project
j (relation Q) to which dis assigned (relation R). Then, we
can write the equation

11"12 (P) = r12 (Q) ·11"21 (R)

and thereby exhibit a strong redundancy.
An important reason for the existence of strong re

dundancies in the named set of relationships is user con
venience. A particular case of this is the retention of semi
obsolete relationships in the named set so that old pro
grams that refer to them by name can continue to run cor
rectly. Knowledge of the existence of strong redundancies
in the named set enables a. system or data base adminis
trator greater freedom in the selection of stored representa
tions to cope more efficiently with current traffic. If the
strong redundancies in the named set are directly reflected
in strong redundancies in the stored set (or if other strong
redundancies are introduced into the stored set), then, gen
erally speaking, extra storage space and update time are
consumed with a potential drop in query time for some
queries and in load on the central processing units.

www.manaraa.com

94

2.2.2. Weak Redundancy. A second type of redun
dancy may exist. In contrast to strong redundancy it is not
characterized by an equation. A collection of relations is
weakly redundant if it contains a relation that has a projec
tion which is not derivable from other members but is at
all times a projection of some join of other projections of
relations in the collection.

We can exhibit a weak redundancy by taking the second
example (cited above) for a strong redundancy, and as
suming now that condition C does not hold at all times.

The relations ?rl2 (P), ?r12 (Q), ?rl2 (R) are complex1o relations
with the possibility of points of ambiguity occurring fronl
time to time in the potential joining of any two. Under
these circumstances, none of them is derivable from the
other two. However, constraints do exist between them,
since each is a projection of some cyclic join of the three of
them. One of the weak redundancies can be characterized
by the statement: for all time, ?rl2 (P) is some composition
of 11"l2 (Q) with ?r21 (R). The composition in question might
be the natural one at some instant and a nonnatural one at
another instant.

Generally speaking, weak redundancies are inherent in
the logical needs of the community of users. They are not
removable by the system or data base administrator. If
they appear at all, they appear in both the named set and
the stored set of representations.

2.3. CONSISTENCY

Whenever the named set of relations is redundant in
either sense, we shall associate with that set a collection of
statements which define all of the redundancies which hold
independent of time between the member relations. If the
information system lacks-and it most probably will-de-

10 A binary relation is complex if neither it nor its converse is a
function.

www.manaraa.com

95

tailed semantic information about each named relation, it
cannot deduce the redundancies applicable to the named
set. It might, over a period of time, make attempts to
induce the redundancies, but such attempts would be fal
lible.

Given a collection C of time-varying relations, an as
sociated set Z of constraint statements and an instantaneous
value V for C, we shall call the state (C, Z, V) consistent
or inconsistent according as r does or does not satisfy Z.
For example, given stored relations R, 8, T together with
the constraint statement "11"12 (T) is a composition of
'1r12 (R) with '1r12 (8)", we may check from time to time that
the values stored for R, 8, T satisfy this constraint. An al
gorithm for making this check would examine the first two
columns of each of R, 8, T (in whatever way they are repre
sented in the system) and determine whether

(1) '1rl (T) = 11"1 (R),

(2) '1r2 (T) = 11"2 (8),

(3) for every element pair (a, c) in the relation '1r12 (T)
there is an element b such that (a, b) is in 11"12 (R)
and (b, c) is in '1r12 (8).

There are practical problems (which we shall not discuss
here) in taking an instantaneous snapshot of a collection
of relations, some of which may be very large and highly
variable.

It is important to note that colbistency as defined above
is a property of the instantaneous state of a data bank, and
is independent of how that state came about. Thus, in
particular, there is no distinction made on the basis of
whether a user generated an inconsistency due to an act of
omission or an act of commission. Examination of a simple
example will show the reasonableness of this (possibly un
conventional) approach to consistency.

www.manaraa.com

96

Suppose the named set C includes the relations S, J, D,
P, Q, R of the example in Section 2.2 and that P, Q, R
possess either the strong or weak redundancies described
therein (in the particular case now under consideration, it
does not matter which kind of redundancy occurs). Further,
suppose that at some time t the data bank state is consistent
and contains no project j such that supplier 2 supplies
project j and j is assigned to department 5. Accordingly,
there is no element (2,5) in 'lr12 (P). Now, a user introduces
the element (2, 5) into 'lr12 (P) by inserting some appropri
ate element into P. The data bank state is now inconsistent.
The inconsistency could have arisen from an act of omj,
sion, if the input (2, 5) is correct, and there does exist a
projectj such that supplier 2 suppliesj andj is assigned to
department 5. In thi::; case, it is very likely that the m:er
intends in the near future to insert elements into Q and R
which will have the effect of introducing (2, j) into 'lr12 (Q)
and (5, j) in 'lr12(R). On the other hand, the input (2,5)
might have been faulty. It could be the case that the U.8er
intended to insert some other element into P-an element
whose insertion would transform a consistent state into
a consistent state. The point is that the system will
normally have no way of resolving this question without
interrogating its environment (perhaps the user who cre
ated the inconsistency).

There are, of course, several possible ways in which a
system can detect inconsistencies and respond to them.
In one approach the system checks for possible inconsist
ency whenever an in..~rtion, deletion, or key update occurs.
Naturally, such checking will slow these operations down.
If an inconsistency has been generated, details are logged
internally, and if it is not remedied within some reasonable
time interval, either the user or someone responsible for
the security and integrity of the data is notified. Another
approach is to conduct consistency checking as a bat.ch

www.manaraa.com

97

operation once a day or less frequently. Inputs causing the
inconsistencies which remain in the data bank state at
checking time can be tracked down if the system main
tains a journal of all state-changing transactions. This
latter approach would certainly be superior if few non
transitory inconsistencies occurred.

2.4. SUMMARY

In Section 1 a relational model of data is proposed as a
basis for protecting users of formatted data systems from
the potentially disruptive changes in data representation
caused by growth in the data bank and changes in traffic.
A normal form for the time-varying collection of relation
ships is introduced.

In Section 2 operations on relations and two types of
redundancy are defined and applied to the problem of
maintaining the data in a consistent state. This is bound to
become a serious practical problem as more and more dif
ferent types of data are integrated together into common
data banks.

Many questions are raised and left unanswered. For
example, only a few of the more important properties of
the data sublanguage in Section 1.4 are mentioned. Neither
the purely linguistic details of such a language nor the
implementation problems are discussed. Nevertheless, the
material presented should be adequate for experienced
systems programmers to visualize several approaches. It
is also hoped that this paper can contribute to greater pre
cision in work on formatted data systems.

Acknowledgment. It was C. T. Davies of IBM Pough
keepsie who convinced the author of the need for data
independence in future information systems. The author
wishes to thank him and also F. P. Palermo, C. P . Wang,
E. B. Altman, and M. E. Senko of the IBM San Jose Re
search Laboratory for helpful discussions.

www.manaraa.com

98

REcmVIIlD SEPTEMBER, 1969; REVISED FEBRU ART, 1970

REFERENCES

1. CHILDS, D. L. Feasibility of a set-theoretical data structure
-a general structure based on a reconstituted definition of
relation. Proc. IFIP Cong., 1968, North Holland Pub. Co.,
Amsterdam, p. 162-172.

2. LEVEIN, R. E., A.ND MARON, M. E. A computer system for
inference execution and data retrieval. Comm. ACM 10,
11 (Nov. 1967), 715-721.

3. BACHMA.N, C. W. Software for random access processing.
Datamation (Apr. 1965), 36-4L

4. MCGEE, W. C. Generalized file processing. In Annual Re
view in Automatic Programming " 13, Pergamon Press,
New York, 1969; pp. 77-149.

5. Information Management System/360, Application Descrip
tion Manual H20-0524-1. mM Corp., White Plains, N. Y.,
July 1968.

6. GIS (Generalized Information System), Application Descrip
tion Manual H20-0574. mM Corp., White Plains, N. Y.,
1965.

7. BLEIER, R. E. Treating hierarchical data structures in the
SDC time-shared data management system (TDMS).
Prac. ACM 22nd Nat. Conf., 1967, MDI Publications,
Wayne, Pa., pp. 41-49.

S. IDS Reference Manual GE 625/635, GE Inform. Sys. Div.,
Pheonix, Ariz., CPB 1093B, Feb. 1968.

9. CHUBCK, A. An Introduction to MCJtAematicaZ Logic 1. Prince
ton U. Press, Princeton, N.J., 1956.

10. FELDMAN, J. A., A.ND RoVNER, P. D. An Algol-based associ
ative language. Stanford Artificial Intelligence Rep. AI-66,
Aug. 1, 1968.

www.manaraa.com

Barry Boehm

Software Engineering Economics

IEEE Transactions on Software Engineering, Vol. SE-10 (1),
1984

pp.4-21

www.manaraa.com

Software Engineering Economics
BARRY W. BOEHM

Manuscript received April 26, 1983; revised June 28, 1983.
The author is with the Software Information Systems Division,

TRW Defense Systems Group, Redondo Beach, CA 90278.

Abstract-This paper summarizes the current state of the art and
recent trends in software engineering economics. It provides an over
view of economic analysis techniques and their applicability to soft
ware engineering and management. It surveys the field of software
cost estimation, including the major estimation techniques available,
the state of the art in algorithmic cost models, and the outstanding
research issues in software cost estimation.

Index T~rm.r-Computer programming costs, cost models, manage
ment decision aids, software cost estimation, software economics,
software engineering, software management.

I. INTRODUCTION

Definitions

The dictionary defmes "economics" as "a social science
concerned chiefly with description and analysis of the produc
tion, distribution, and consumption of goods and services."
Here is another defInition of economics which I think is more
helpful in explaining how economics relates to software engi
neering.

Economics is the study of how people make decisions
.in resource-limited situations.
This defInition of economics fIts the major branches of

classical economics very well.
Macroeconomics is the study of how people make decisions

in resource-limited situations on a national or global scale. It
deals with the effects of decisions that national leaders make
on such issues "as tax rates, interest rates, foreign and trade
policy.

www.manaraa.com

102

Microeconomics is the study of how people make decisions
in resource-limited situations on a more personal scale. It deals
with the decisions that individuals and organizations make on
such issues as how much insurance to buy, which word proc
essor to buy, or what prices to charge for their products or
services.

Economics and Software Engineering Management

If we look at the discipline of software engineering, we see
that the microeconomics branch of economics deals more with
the types of decisions we need to make as software engineers
or managers.

Clearly, we deal with limited resources. There is never
enough time or money to coverall the good features we would
like to put into our software products. And even in these days
of cheap hardware and virtual memory, our more significant
software products must always operate within a world of lim
ited computer power and main memory. If you have been in
the software engineering field for any length of time, I am sure
you can think of a number of decision situations in which you
had to determine some key software product feature as a func
tion of some limiting critical resource.

Throughout the software life cycle, l there are many de
cision situations involving limited resources in which software
engineering economics techniques provide useful assistance. To
provide a feel for the nature of these economic decision issues,
an example is given below for each of the major phases in the
software life cycle.

• Feasibility Phase: How much should we invest in in
formation system analyses (user questionnaires and in-

1 Economic principles underlie the overall structure of the software
life cycle, and its primary refinements of proto typing, incremental de
velopment, and advancemanship. The primary economic driver of the
life-cycle structure is the significantly increasing cost of making a soft
ware change or fixing a software problem, as a function of the phase
in which the change or fix is made. See [11, ch. 4].

www.manaraa.com

103

terviews, current-system analysis, workload characteri
zations, simulations, scenarios, prototypes) in order
that we converge on an appropriate defmition and con
cept of operation for the system we plan to imple
ment?

• Plans and Requirements Phase: How rigorously should
we specify requirements? How much should we invest
iIi requirements validation activities (automated com
pleteness, consistency, and traceability checks, analytic
models, simulations, prototypes) before proceeding to
design and develop a software system?

• Product Design Phase: Should we organize the software
to make it possible to use a complex piece of existing
software which generally but not completely meets our
requiremen ts?

• Programming Phase: Given a choice between three data
storage and retrieval schemes which are primarily exe
cution time-efficient, storage-efficient, and easy-to
modify, respectively; which of these should we choose
to implement?

• Integration and Test Phase: How much testing and for
mal verification should we perform on a product be
fore releasing it to users?

• Maintenance Phase: Given an extensive list of suggested
product improvements, which ones should we imple
ment fust?

• Phaseout: Given an aging, hard-to-modify software
product, should we replace it with a new product, re
structure it, or leave it alone?

Outline of This Paper

The economics field has evolved a number of techniques
(cost-benefit analysis, present value analysis, risk analysis, etc.)
for dealing with decision issues such as the ones above. Section

www.manaraa.com

104

II of this paper provides an overview of these techniques and
their applicability to software engineering.

One critical problem which underlies all applications of
economic techniques to software engineering is the problem of
estimating software costs. Section III contains three major
sections which summarize this field:

III-A: Major Software Cost Estimation Techniques
III-B: Algorithmic Models for Software Cost Estimation
III-C: Outstanding Research Issues in Software Cost Estima-

tion.
Section IV concludes by summarizing the major benefits of

software engineering economics, and commenting on the
major challenges awaiting the field.

II. SOFTWARE ENGINEERING ECONOMICS ANALYSIS

TECHNIQUES

Overview of Relevant Techniques

The microeconomics field provides a number of techniques
for dealing with software life-cycle decision issues such as the
ones given in the previous section. Fig. 1 presents an overall
master key to these techniques and when to use them.2

As indicated in Fig. 1, standard optimization techniques
can be used when we can fmd a single quantity such as dollars
(or pounds, yen, cruzeiros, etc.) to serve as a "universal sol
vent" into which all of our decision variables can be converted.
Or, if the nondollar objectives can be expressed as constraints
(system availability must be at least 98 percent; throughput
must be at least 150 transactions per second), then standard
constrained optimization techniques can be used. And if cash
flows occur at different times, then present-value techniques
can be used to normalize them to a common point in time.

2 The chapter numbers in Fig. 1 refer to the chapters in [11], in
which those techniques are discussed in further detail.

www.manaraa.com

105

MASTER KEY
TO SOFTWARE ENGINEERING ECONOMICS

DECISION ANALYSIS TECHNIQUES

NO

USF ST ANOARO
OPT IMII A TlON,
NET VALUE
TECHNIOUFS
(CHAI'TrR5 '0, 1)1

USE ST ANOARD
CONSTRAINF n.
OPTIMIZATION
HCHNloms
ICHAPHR '61

USE COST
BENEFIT (CHI
nrCISION MA~ING
TFCHNIOUFS

ICflAPHRS II, 121

USE FIGURE OF -
M£ RI T rrCHNII)UfS,

C8 Tf CHNIOUES
ICHAPTf R '51

,USE 1 eCHNIOUES FOR

RECONCII ING NON·
OUAN TlrtAHLE DC.
ICHAPTf R 181

FIND,

USE LESS
SENSITIVE

SOLLITION

r---------- --------,
I
I
I
I
I

WHFN S ARf A MIX OF
PRFsrNT ANI) fUTURE CASH II OWS

WHEN SOME Des INVOLVE

L _____ _

USf. PRESENT VALUE TECHNIOllFS TO
CONVERT FUTURE S TO PRESENT S
ICHAPnR 14'

USE STATISTICAL DECISION THEORY
TECHNIOUES (CHAPTERS 19,201

I
I
I
I
I
J

Fig. 1. Master key to software engineering economics decision analysis
techniq ues,

www.manaraa.com

106

Throughput 2DO

110
..-. __ B-luilcl 01

(transactions) 110

sec
1«1

120

lG11

10

10

40

211

Fig. 2. Cost-effectiveness comparison, transaction processing system
options.

More frequently, some of the resulting benefits from the
software system are not expressible in dollars. In such situa
tions, one alternative solution will not necessarily dominate
another solution.

An example situation is shown in Fig. 2, which compares
the cost and benefits (here, in terms of throughput in trans
actions per second) of two alternative approaches to develop
ing an operating system for a transaction processing system.

• Option A: Accept an available operating system. This
will require only $80K in software costs, but will
achieve a peak performance of 120 transactions per
second, using five $10K minicomputer processors, be
cause of a high multiprocessor overhead factor.

• Option B: Build a new operating system. This system
would be more efficient and would support a higher
peak throughput, but would require $180K in soft
ware costs.

www.manaraa.com

107

The cost-versus-performance curve for these two options
are shown in Fig. 2. Here, neither option dominates the
other, and various cost-benefit decision-making techniques
(maximum profit margin, cost/benefit ratio, return on in
vestments, etc.) must be used to choose between Options
A and B.

In general, software engineering decision problems are
even more complex than Fig. 2, as Options A and B will
have several important criteria on which they differ (e.g.,
robustness, ease of tuning, ease of change, functional
capability). If these criteria are quantifiable, then some type
of figure of merit can be defmed to support a comparative
analysis of the preferability of one option over another. If
some of. the criteria are unquantifiable (user goodwill, pro
grammer morale, etc.), then some techniques for comparing
unquantifiable criteria need to be used. As indicated in Fig. 1,
techniques for each of these situations are available, and
discussed in [11] .

Analyzing Risk, Uncertainty, and the Value of Information

In software engineering, our decision issues are generally
even more complex than those discussed above. This is be
cause the outcome of many of our options cannot be deter
mined in advance. For example, building an operating sys
tem with a significantly lower multiprocessor overhead may
be achievable, but on the other hand, it may not. In such cir
cumstances, we are faced with a problem of decision making
under uncenainty, with a considerable risk of an undesired
outcome.

The main economic analysis techniques available to sup
port us in resolving such problems are the following.

1) Techniques for decision making under complete un
certainty, such as the maximax rule, the maximin rule, and
the Laplace rule [38]. These techniques are generally inade
quate for practical software engineering decisions.

www.manaraa.com

108

2) Expected-value techniques, in which we estimate the
probabilities of occurrence of each outcome (successful or
unsuccessful development of the new operating system) and
complete the expected payoff of each option:

EV = Prob(success) * Payoff(successful OS)

+ Prob(failure) * Payoff(unsuccessful OS).

These techniques are better than decision making under com
plete uncertainty, but they still involve a great deal of risk if
the Prob(failure) is considerably higher than our estimate of it.

3) Techniques in which we reduce uncertainty by buying
information. For example, pro to typing is a way of buying in
formation to reduce our uncertainty about the likely success
or failure of a multiprocessor operating system; by developing
a rapid prototype of its high-risk elements, we can get a clearer
picture of our likelihood of successfully developing the full
operating system.

In general, prototyping and other options for buying in
formation3 are most valuable aids for software engineering de
cisions. However, they always raise the following question:
"how much information-buying is enough?"

In principle, this question can be answered via statistical de
cision theory techniques involving the use of Bayes' Law, which
allows us to calculate the expected payoff from a software
project as a function of our level of investment in a prototype
or other information-buying option. (Some examples. of the
use of Bayes' Law to estimate the appropriate level of invest
ment in a prototype are given in [11, ch. 20].)

In practice, the use of Bayes' Law involves the estimation
of a number of conditional probabilities which are not easy to

3 Other examples of options for buying information to support
software engineering decisions include feasibility studies, user sur
veys, simulation, testing, and mathematical program verification tech
niques.

www.manaraa.com

109

estimate accurately. However, the Bayes' Law approach can be
translated into a number of value-ol-information guidelines; or
conditions under which it makes good sense to decide on in
vesting in more information before committing ourselves to a
particular course of action.

Condition 1: There exist attractive alternatives whose pay
off varies greatly, depending on some critical states of nature.
If not, we can commit ourselves to one of the attractive alter
natives with no risk of significant loss.

Condition 2: The critical states of nature have an appreci
able probability of occurring. If not, we can again commit our
selves without major risk. For situations with extremely high
variations in payoff, the appreciable probability level is lower
than in situations with smaller variations in payoff.

Condition 3: The investigations have a high probability of
accurately identifying the occurrence of the critical states of
nature. If not, the investigations will not do much to reduce
our risk of loss due to making the wrong decision.

Condition 4: The required cost and schedule of the investi
gations do not overly curtail their net value. It does us little
good to obtain results which cost more than they can save us,
or which arrive too late to help us make a decision.

Condition 5: There exist significant side benefits derived
from performing the investigations. Again, we may be able to
justify an investigation solely on the basis of its value in train
ing, team-building, customer relations, or design validation.

Some Pitfalls Avoided by Using the Value-ol-Information
Approach

The guideline conditions provided by the value-of-informa
tion approach provide us with a perspective which helps us
avoid some serious software engineering pitfalls. The pitfalls
below are expressed in terms of some frequently expressed but
faulty pieces of software engineering advice.

www.manaraa.com

110

Pitfall 1: Always use a simulation to investigate the feasibil
ity of complex realtime software. Simulations are often ex
tremely valuable in such situations. However, there have been
a good many simulations developed which were largely an ex
pensive waste of effort, frequently under conditions that would
have been picked up by the guidelines above. Some have been
relatively useless because, once they were built, nobody could
tell whether a given set of inputs was realistic or not (picked
up by Condition 3). Some have been taken so long to develop
that they produced their fIrst results the week after the pro
posal was sent out, or after the key design review was com
pleted (picked up by Condition 4).

Pitfall 2: Always build the software twice. The guidelines
indicate that the prototype (or build-it-twice) approach is often
valuable, but not in all situations. Some prototypes have been
built of software whose aspects were all straightforward and
familiar, in which case nothing much was learned by building
them (picked up by Conditions 1 and 2).

Pitfall 3: Build the software purely top-down. When inter
preted too literally, the top-down approach does not concern
itself with the design of low level modules until the higher
levels have been fully developed. If an adverse state of nature
makes such a low level module (automatically forecast sales
volume, automatically discriminate one type of aircraft from
another) impossible to develop, the subsequent redesign will
generally require the expensive rework of much of the higher
level design and code. Conditions 1 and 2 warn us to temper
our top-down approach with a thorough top-to-bottom soft
ware risk analysis during the requirements and product design
phases.

Pitfall 4: Every piece of code should be proved correct.
Correctness proving is still an expensive way to get informa
tion on the fault-freedom of software, although it strongly
satisfies Condition 3 by giving a very high assurance of a pro
gram's correctness. Conditions 1 and 2 recommend that proof

www.manaraa.com

111

techniques be used in situations where the operational cost of
a software fault is very large, that is, loss of life, compromised
national security, major fmanciallosses. But if the operational
cost of a software fault is small, the added information on
fault-freedom provided by the proof will not be worth the in
vestment (Condition 4).

Pitfall 5: Nominal-case testing is sufficient. This pitfall is
just the opposite of Pitfall 4. If the operational cost of poten
tial software faults is large, it is highly imprudent not to per
form off-nominal testing.

Summary: The Economic Value of Information

Let us step back a bit from these guidelines and pitfalls. Put
simply, we are saying that, as software engineers:

"It is often worth paying for information because it
helps us make better decisions."
If we look at the statement in a broader context, we can see

that it is the primary reason why the software engineering field
exists. It is what practically all of our software customers say
when they decide to acquire one of our products: that it is
worth paying for a management information system, a weather
forecasting system, an air traffic control system, an inventory
control system , etc., because it helps them make better decisions.

Usually, software engineers are producers of management
information to be consumed by other people, but during the
software life cycle we must also be consumers of management
information to support our own decisions. As we come to ap
preciate the factors which make it attractive for us to pay for
processed information which helps us make better decisions as
software engineers, we will get a better appreciation for what
our customers and users are looking for in the information
processing systems we develop for them.

www.manaraa.com

112

III. SOFIWARE COST ESTIMATION

Introduction

All of the software engineering economics decision analysis
techniques discussed above are only as good as the input data
we can provide for them. For software decisions, the most
critical and difficult of these inputs to provide are estimates
of the cost of a proposed software project. In this section,
we will summarize:

1) the major software cost estimation techniques avail
able, and their relative strengths and difficulties;

2) algorithmic models for software cost estimation;
3) outstanding research issues in software cost estimation.

A. Major Software Cost Estimation Techniques

Table I summarizes the relative strengths and difficulties of
the major software cost estimation methods in use today.

1) AlgOrithmic Models: These methods provide one or
more algorithms which produce a software cost estimate as a
function of a number of variables which are considered to be
the major cost drivers.

2) Expert Judgment: This method involves consulting one
or more experts, perhaps with the aid of an expert-consensus
mechanism such as the Delphi technique.

3) Analogy: This method involves reasoning by analogy
with one or more completed projects to relate their actual
costs to an estimate of the cost of a similar new project .
. 4) Parkinson: A Parkinson principle ("work expands to

fill the available volume") is invoked to equate the cost esti
mate to the available resources.

5) Price-to-Win: Here, the cost estimate is equated· to the
price believed necessary to win the job (or the schedule be
lieved necessary to be frrst in the market with a new product,
etc.).

www.manaraa.com

113

6) Top-Down: An overall cost estimate for the project is
derived from global properties of the software product. The
total cost is then split up among the various components.

7) Bottom-Up: Each component of the software job is
separately estimated, and the results aggregated to produce
an estimate for the overall job.

The main conclusions that we can draw from Table I are
the following.

• None of the alternatives is better than the others from
all aspects.

• The Parkinson and price- to-win methods are unaccept
able and do not produce satisfactory cost estimates.

• The strengths and weaknesses of the other techniques
are complementary (particularly the algorithmic models versus
expert judgment and top-down versus bottom-up).

• Thus, in practice, we should use combinations of the
above techniques, compare their results, and iterate on them
where they differ.

Method

Algorithmic
model

Expert
judgment

TABLE!
STRENGTHS AND WEAKNESSES OF SOFlWARE

COST-ESTIMATION METHODS

Strengths

• Ob;ective. repeatable. analyzable
formula

• Efficient. good for sensitivity
analysis

• Qbiec:tMIIy calitlrated to experience

• Assessment of representativeness.
int«'actions. exceptional

Weaknesses

• Subjective ~
• Assessment 0I111Q1P1ionaJ

circumstances

• Calibrated to past. not
future

• No better INn ~ts
• Biases. inc:ompl8llrecall

Analogy • Based on representative expel ience • Representativeness 01 experience

Parkinson • Correlates with some experience • Reinforces poor practice

Price to win • Often gets the contract • Generally produces large overruns

T op.down • System Ie¥eI focus • Less detailed bass
• Elficient • Less stable

BottonHlP • More detailed basis • May 0Y8I'100k systam IeYeI
• More stable costs
• Fosa.rs indMduaI COINiib"611t • Requns more IIIIcrt

www.manaraa.com

114

Fundamental Limitations of Software Cost Estimation
Techniques

Whatever the strengths of a software cost estimation tech
nique, there is really no way we can expect the technique to
compensate for our lack of defInition or understanding of the
software job to be done. Until a software specification is fully
deftned, it actually represents a range of software products,
and a corresponding range of software development costs.

This fundamental limitation of software cost estimation
technology is illustrated in Fig. 3, which shows the accuracy
within which software cost estimates can be made, as a func
tion of the software life-cycle phase (the horizontal axis), or of
the level of knowledge we have of what the software is in
tended to do. This level of uncertainty is illustrated in Fig. 3
with respect to a human-machine interface component of
the software.

1.501

f 1.2501

§ x

.J O.a..
-I
rr: 0.67x

0.501

0.25x

0- of people.
cilia aou to RIppon

Query types, cilia lOllIs,
intelligent-termiNI trldloffs,

raponse times

/
InttrMI clltlltructure,

buffer t.ndli"9 technique

/ Detailed ICheduli"9 algorithms,
error handli"9

Programmer understanding
of specifications

Concept of
apernion

Requirements
specifications

/'

Product Det8iled
design design

specifications specifications
Accepted
software

FeaSibility Plans and
requ irements

Product
design

Detailed Development and test
design

Phases and milestones

Fig. 3. Software cost estimation accuracy versus phase.

www.manaraa.com

115

When we first begin to evaluate alternative concepts for a
new software application, the relative range of our software
cost estimates is roughly a factor of four on either the high or
low side.4 This range stems from the wide range of uncertainty
we have at this time about the actual nature of the product.
For the human-machine interface component, for example,
we do not know at this time what classes of people (clerks,
computer specialists, middle managers, etc.) or what classes of
data (raw or pre-edited, numerical or text, digital or analog) the
system will have to support. Until we pin down such uncer
tainties, a factor of four in either direction is not surprising as
a range of estimates.

The above uncertainties are indeed pinned down once we
complete the feasibility phase and settle on a particular con
cept of operation. At this stage, the range of our estimates di
minishes to a factor of two in either direction. This range is
reasonable because we still have not pinned down such issues
as the specific types of user query to be supported, or the spe
cific functions to be performed within the microprocessor in
the intelligent terminal. These issues will be resolved by the
time we have developed a software requirements specification,
at which point, we will be able to estimate the software costs
within a factor of 1.5 in either direction.

By the time we complete and validate a product design
specification, we will have resolved such issues as the internal
data structure of the software product and the specific tech
niques for handling the buffers between the terminal micro
processor and the central processors on one side, and between
the microprocessor and the display driver on the other. At this
point, our software estimate should be accurate to within a
factor of 1.25, the discrepancies being caused by some remain
ing sources of uncertainty such as the specific algorithms to be

4 These ranges have been determined subjectively, and are intended
to represent 80 percent confidence limits, that is, "within a factor of
four on either side, 80 percent of the time."

www.manaraa.com

116

used for task scheduling, error handling, abort processing, and
the like. These will be resolved by the end of the detailed de
sign phase, but there will still be a residual uncertainty about
10 percent based on how well the programmers really under
stand the specifications to which they are to code. (This factor
also includes such consideration as personnel turnover uncer
tainties during the development and test phases.)

B. Algorithmic Models for Software Cost Estimation
Algorithmic Cost Models: Early Development

Since the earliest days of the software field, people have
been trying to develop algorithmic models to estimate soft
ware costs. The earliest attempts were simple rules of thumb,
such as:

• on a large project, each software performer will provide
an average of one checked-out instruction per man-hour (or
roughly 150 instructions per man-month);

• each software maintenance person can maintain four
boxes of cards (a box of cards held 2000 cards, or roughly
2000 instructions In those days of few comment cards).

Somewhat later, some projects began collecting quantita
tive data on the effort involved in developing a software
product, and its distribution across the software life cycle. One
of the earliest of these analyses was documented in 1956 in [8] .
It indicated that, for very large operational software products on
the order of 100 000 delivered source instructions (100 KDSI),
that the overall productivity was more like 64 DSI/man-month,
that another 100 KDSI of support-software would be required;
that about 15 000 pages of documentation would be produced
and 3000 hours of computer time consumed; and that the dis
tribution of effort would be as follows:

Program Specs:
Coding Specs:

10 percent
30 percent

www.manaraa.com

117

Coding:
Parameter Testing:

10 percent
20 percent
30 percent Assembly Testing:

with an additional 30 percent required to produce operational
specs for the system. Unfortunately, such data did not become
well known, and many subsequent software projects went
through a painful process of rediscovering them.

During the late 1950's and early 1960's, relatively little
progress was made in software cost estimation, while the fre
quency and magnitude of software cost overruns was becom
ing critical to many large systems employing computers. In
1964, the U.S. Air Force contracted with System Develop
ment Corporation for a landmark project in the software cost
estimation field. This project collected 104 attributes of 169
software projects and treated them to extensive statistical anal
ysis. One result was the 1965 SOC cost model [41] which was
the best possible statistical 13-parameter linear estimation
model for the sample data:

MM= -33.63

+ 9 .15 (Lack of Requirements) (0-2)

+ 10.73 (Stability of Design) (0-3)

+0.51 (percent Math Instructions)

+0.46 (percent Storage/Retrieval Instructions)

+0.40 (Number of Subprograms)

+ 7.28 (Programming Language) (0-1)

-21.45 (Business Application) (0-1)

+ 13.53 (Stand-Alone Program) (0.1)

+ 12.35 (First Program on Computer) (0-1)

+ 58.82 (Concurrent Hardware Development) (0-1)

+30.61 (Random Access Device Used) (0-1)

www.manaraa.com

118

+29.55 (Difference Host, Target Hardware) (0-1)

+0.54 (Number of Personnel Trips)

-25.20 (Developed by Military Organization) (0-1).

The numbers in parentheses refer to ratings to be made by the
estimator.

When applied to its database of 169 projects, this model
produced a mean estimate of 40 MM and a standard deviation
of 62 MM; not a very accurate predictor. Further, the applica
tion of the model is counterintuitive; a project with all zero
ratings is estimated at minus 33 MM; changing language from a
higher order language to assembly language adds 7 MM, inde
pendent of project size. The most conclusive result from the
SDC study was that there were too many nonlinear aspects of
software development for a linear cost-estimation mode) to
work very well.

Still, the SDC effort provided a valuable base of information
and insight for cost estimation and future models. Its cumula
tive distribution of productivity for 169 projects was a valu
able aid for producing or checking cost estimates. The estima
tion rules of thumb for various phases and activities have been
very helpful, and the data have been a major foundation for
some subsequent cost models.

In the late 1960's and early 1970's, a number of cost models
were developed which worked reasonably well for a certain re
stricted range of projects to which they were calibrated. Some
of the more notable examples of such models are those de
scribed in [3], [54], [57].

The essence of the TRW Wolverton model [57] is shown in
Fig. 4, which shows a number of curves of software cost per
object instruction as a function of relative degree of difficulty
(0 to 100), novelty of the application (new or old), and type
of project. The best use of the model involves breaking the
software into components and estimating their cost individu-

www.manaraa.com

c·
.9
U
E .. . s
~
1!i
0

! -s u

119

~~--------------~------------~~----~

70

Categories
C = Control
I = Input/output
P = Pre/post processor
A = Algorithm
D = Data management
T = Time critical processor

Sample range
60 excludes upper and lower

20 percentiles

50

40

New
30

20

Easy Medium

o
T (aliI

Category (I

~_--(AloLo

Hard
10~ ____________________________________ ~

o 20 40 60

Relative degree of difficulty: percent of total
sample experlencong this rate or less

100

Fig. 4. TRW Wolverton model: Cost per object instruction versus rela
tive degree of difficulty.

ally. This, a 1000 object-instruction module of new data man
agement software of medium (50 percent) difficulty would be -
costed at $46jinstruction, or $46 000.

This model is well-calibrated to a class of near-real-time
government command and control projects, but is less ac
curate for some other classes of projects. In addition, the
model provides a good breakdown of project effort by phase
and activity.

www.manaraa.com

120

In the late 1970's, several software cost estimation models
were developed which established a significant advance in the
state of the art. These included the Putnam SLIM Model [44] ,
the Doty Model [27], the RCA PRICE S model [22], the
COCOMO model [11], the IBM-FSD model [53], the Boeing
model [9], and a series of models developed by GRC [15]. A
summary of these models, and the earlier SDC and Wolverton
models, is shown in Table II, in terms of the size, program,
computer, personnel, and project attributes used by each
model to determine software costs. The first four of these
models are discussed below.

The Putnam SLIM Model [44J , [45 J

The Putnam SLIM Model is a commercially available (from
Quantitative Software Management, Inc.) software product
based on Putnam's analysis of the software life cycle in terms
of the Rayleigh distribution of project personnel level versus
time. The basic effort macro-estimation model used in SLIM
is

where

Ss _ - number of delivered source instructions
K - life-cycle effort in man-years
td - development time in years
Ck - a "technology constant."

Values of Ck typically range between 610 and 57 314. The
current version of SLIM allows one to calibrate Ck to past
projects or to past projects or to estimate it as a function of a
project's use of modern programming practices, hardware con
straints, personnel experience, interactive development, and
other factors. The required development effort, DE, is esti
mated as roughly 40 percent of the life-cycle effort for large

www.manaraa.com

T
A

B
L

E
 I

I
F

A
C

T
O

R
S

 U
S

E
D

 I
N

 'V
A

R
IO

U
S

 C
O

S
T

 M
O

D
E

L
S

SO
C

.
T

R
W

,
PU

T
N

A
M

.
R

C
A

.
B

O
E

IN
G

.
G

R
C

.
G

R
O

U
P

FA
C

TO
R

19

65

19
72

SL

IM

O
O

TY

PR
IC

E
S

IB
M

19

71

19
19

C

O
C

O
M

O

SO
FC

O
ST

D

SH

JE
N

SE
N

SI
Z

E

SO
U

R
C

E
IN

ST
R

U
C

T
IO

N
S

X

X

X

X

X

X

X

X

A
T

T
R

IB
U

T
E

S
O

B
JE

C
T

 I
N

ST
R

U
C

T
IO

N
S

X

X

X

X

N
U

M
B

ER
 O

F
R

O
U

T
IN

E
S

X

X

X

N
U

M
B

ER
 O

F
D

 ...
 T

 ...
 ,

T
E

M
S

X

X

X

N
U

M
B

ER
 O

F
O

U
T

PU
T

 F
O

R
M

A
T

S
X

X

D

O
C

U
M

EN
TA

TI
O

N

X

X

X

X

N
U

"'B
E

R
 O

F
PE

R
SO

N
N

E
L

X

X

X

X

X

PR
O

G
R

 ...
 M

TY

PE

X

X

X

X

X

X

X

X

A
T

T
R

IB
U

T
E

S
C

O
M

PL
EX

IT
Y

X

X

X

X

X

X

X

X

LA

N
G

U
A

G
E

X

X

X

X

X

X

R
EU

SE

X

X

X

X

X

X

X

X

R
E

Q
U

IR
E

D
 R

E
L

IA
B

IL
IT

Y

X

X

X

X

X

D
IS

PL
A

Y
 R

E
D

U
IR

E
M

E
N

T
S

X

X

X

C
O

M
PU

TE
R

TI

M
E

C
O

N
ST

R
"'I

N
T

X

)(

X

~I
)(

X

X

X

X

X

X

A

T
T

R
IB

U
T

E
S

ST
O

R
A

G
E

C
O

N
ST

R
A

IN
T

)(

X

X

X

X

X

X

X

~

H
A

R
D

W
A

R
E

C
O

N
fiG

U
R

A
.T

IO
N

X

X

I\

)

~

C
O

N
C

U
R

R
E

N
T

 H
A

R
O

W
A

R
E

D
EV

EL
O

PM
EN

T
X

)(

X

X

X

~

X

X

IN
T

tR
FA

C
IN

G
 E

Q
U

IP
M

EN
T.

 S
IW

X

X

PE
R

SO
N

N
E

L

PE
R

SO
N

N
E

L
 C

A
PA

B
IL

IT
Y

X

X

X

X

X

X

X

...

 T
T

R
IB

U
T

E
S

PE
R

SO
N

N
E

L
 C

O
N

T
IN

U
IT

Y

X

X

H
A

R
O

W
A

R
E

E
X

PE
R

IE
N

C
E

X

X

X

X

X

X

 I
X

X

)(

)(

A
PP

L
IC

A
T

IO
N

S
E

X
PE

R
IE

N
C

E

X

X

X

X

X

=1
X

X

X

X

~
A
N
"
U
A
G
E
 E

X
PE

R
IE

N
C

E

X

X

X

X

X

X

X

PR
Q

JE
C

T

T
O

O
L

S
A

N
D

 T
E

C
H

N
IQ

U
E

S
X

X

X

X

X

X

X

X

A

T
T

R
IB

U
T

E
S

C
U

ST
O

M
ER

 I
N

T
E

R
FA

C
E

X

X

X

X

R

E
Q

U
IR

E
M

E
N

T
S

D
E

FI
N

IT
IO

N

X

X

X

X

X

X

R
E

Q
U

IR
E

M
E

N
T

S
V

O
L

A
T

IL
IT

Y

X

X

X

X

X

X

X

X

X

SC
H

fD
U

L
E

X

X

X

X

X

X

SE

C
U

R
IT

Y

X

X

X

C
O

M
PU

TE
R

 A
C

C
ES

S
X

X

X

X

X

X

X

X

T

R
A

V
E

L
/R

E
H

O
ST

IN
G

/M
U

L
 T

I·S
IT

E

X

X

X

X

X

)(

SU
PP

O
R

T
 S

O
FT

W
A

R
E

M
A

T
'JR

IT
Y

X

X

C
A

L
IB

R
A

T
IO

N

FA
C

T
O

R

X

X

X

E
FF

Q
R

T

M
M

N
O

M

•
C

ID
Sn

X
•

X
 •

EQ

U
A

TI
O

N

1.
0

1.
04

7
0.

91

1.
0

1.
05

 -
1

.2

1.
0

1.
2

SC
H

ED
U

LE

'0
 •

C

 I
"'

'''
'X

,
X

 •

0.
32

 -
0.

38

EQ
U

A
TI

O
N

0.

35

0.
35

6
0.

33
3

www.manaraa.com

122

systems. For smaller systems, the percentage varies as a func
tion of system size.

The SLIM model includes a number of useful extensions to
estimate such quantities as manpower distribution, cash flow,
major-milestone schedules, reliability levels, computer time,
and documentation costs.

The most controversial aspect of the SLIM model is its
tradeoff relationship between development effort K and be
tween development time td. For a software product of a given
size, the SLIM software equation above gives

constant
K=--:--

t4
d

F or example, this relationship says that one can cut the
cost of a software project in half, simply by increasing its de
velopment time by 19 percent (e.g., from 10 months to 12
months). Fig. 5 shows how the SLIM tradeoff relationship com
pares with those of other models; see [11, ch. 27] for further
discussion of this issue.

On balance, the SLIM approach has provided a number
of useful insights into software cost estimation, such as the
Rayleigh-curve distribution for one-shot software efforts, the
explicit treatment of estimation risk and uncertainty, and the
cube-root relationship defining the minimum development time
achievable for a project requiring a given amount of effort.

The Doty Mode1127}

This model is the result of an extensive data analysis activ
ity, including many of the data points from the SDC sample.
A number of models of similar form were developed for dif
ferent application areas. As an example, the model for general
application is

www.manaraa.com

RELATIVE
EFFORT
MM
MMNOM

1.4

1.3

1.2

0.9

0.8

0.7

123

0.7 D.8 1.3

RELATIVE SCHEDULE

T DESIRED/T NOM

Fig. S. Comparative effort-schedule tradeoff relationships.

MM = 5.288 (KDSI)1.047, for KDSI ;> 10

MM = 2.060 (KDSI)1.o47 (ii Ji),
J=1

for KDSI < 10.

1.4

The effort multipliers Ii are shown in Table III. This model has
a much more appropriate functional form than the SDC
model, but it has some problems with stability, as it exhibits a
discontinuity at KOSI = 10, and produces widely varying esti
mates via the I factors (answering "yes" to "fIrst software de
veloped on CPU" adds 92 percent to the estimated cost).

The RCA PRICE S Model [22]

PRICE S is a commercially available (from RCA, Inc.)
macro cost-estimation model developed primarily for embed-

www.manaraa.com

124

TABLE III
DOTY MODEL FOR SMALL PROGRAMS·

1-'.
MM = 2.060 I''''' JJ ~ -.

Factor ~ Yes No

SpeciII diIpIay '. 1.11 1.00
o.taiIed definition of operatioI. AMP.I , 1.00 1.11
a.nge to operatioI. raquiwnenIa , 1.05 1.00
~ opIIatiofl , 1.33 1.00
CPU memory COI..nint .. 1.43 1.00
CPU line COIIIInIint , 1.33 1.00
RrllIOftwera .. "oped on CPU " 1.12 1.00
CcIncuiNnt ".lapiMid of ADP 1.82 1.00
TimeIIwa V8I'IUI batch proc .. IllIG. In

deu II opmeid , 0.83 1.00
DIMIIoper UIing comput8r at ...,.. f.aIly fa. 1.43 1.00
0.. IIL1PI'*d at aplfatiOilei ... ~I 1.38 1.00
o.u Ilapment comput8r cIIIa.m ttWI WgIIt
~ ~ 1.25 1.00

o..llopmalt at men ttWI one ... fu 1.25 1.00

Progi 8CC.sS to COII1II*r ~. I:. 1.00
0.10

-"-""0,000 _

ded system applications. It has improved steadily with experi
ence; earlier versions with a widely varying subjective complex
ity factor have been replaced by versions in which a number of
computer, personnel, and project attributes are used to modu
late the complexity rating.

PRICE S has extended a number of cost~estimating relation
ships developed in the early 1970's such as the hardware con
straint function shown in Fig. 6 [10]. It was primarily devel
oped to handle military software projects, but now also in
cludes rating levels to cover business applications.

PRICE S also provides a wide range of useful outputs on
gross phase and activity distributions analyses, and monthly
project cost-schedule-expected progress forecasts. Price S uses
a two-parameter beta distribution rather than a Rayleigh curve
to calculate development effort distribution versus calendar
time.

PRICE S has recently added a software life-cycle support
cost estimation capability called PRICE SL [34]. It involves
the defInition of three categories of support activities.

www.manaraa.com

3

o

125

Utilization Normalized Normalized

0.50
0.60
0.70
0.80
0.85
0.90
0.95

0.4

cost schedule

1.00
U18
1.21
1.47
1.73
2.25
3.78

0.5 0.6

1.00
·1.00
1.00
1.05
1.10
1.18
1.35

0.7 0.8

UtilizatIon of available speed and memory

0.9 1.0

Fig. 6. RCA PRICE S model: Effect of hardware constraints.

• Growth: The estimator specifies the amount of code to
be added to the product. PRICE SL then uses its standard
techniques to estimate the resulting life-cycle-effort distribu
tion.

• Enhancement: PRICE SL estimates the fraction of the
existing product which will be modified (the estimator may
provide his own fraction), and uses its standard techniques to
estimate the resulting life-cycle effort distribution.

• Maintenance: The estimator provides a parameter indi
cating the quality level of the developed code. PRICE SL uses
this to estimate the effort required to eliminate remaining er
rors.

The COnstructive COst MOdel (COCOMO) [llJ

The primary motivation for the COCOMO model has been
to help people understand the cost consequences of the de
cisions they will make in commissioning, developing, and sup
porting a software product. Besides providing a software cost
estimation capability, COCOMO therefore provides a great

www.manaraa.com

126

deal of material which explains exactly what costs the model
is estimating, and why it comes up with the estimates it does.
Further, it provides capabilities for sensitivity analysis and
tradeoff analysis of many of the common software engineering
decision issues.

COCOMO is actually a hierarchy of three increasingly de
tailed models which range from a single macro-estimation
scaling model as a function of product size to a micro-estima
tion model with a three-level work breakdown structure and
a set of phase-sensitive multipliers for each cost driver attri
bute. To provide a reasonably concise example of a current
state of the art cost estimation model, the intermediate level
of COCOMO is described below.

Intermediate COCOMO estimates the cost of a proposed
software product in the following way.

1) A nominal development effort is estimated as a func
tion of the product's size in delivered source instructions in
thousands (KOSI) and the proje.ct's development mode.

2) A set of effort multipliers are determined from the
product's ratings on a set of 15 cost driver attributes.

3) The estimated development effort is obtained by mul
tiplying the nominal effort estimate by all of the producfs
effort multipliers.

4) Additional factors can be used to determine dollar
costs, development schedules, phase and activity distributions,
computer costs, annual maintenance costs, and other elements
from the development effort estimate.

Step i-Nominal Effort Estimation: First, Table IV is used
to determine the project's development mode. Organic-mode
projects typically come from stable, familiar, forgiving, rela
tively unconstrained environments, and were found in the
COCOMO data analysis of 63 projects have a different scaling
equation from the more ambitious, unfamiliar, unforgiving,
tightly constrained embedded mode. The resulting scaling
equations for each mode are given in Table V; these are used

www.manaraa.com

127

to determine the nominal development effort for the project
in man-months as a function of the project's size in KDSI
and the project's development mode.

F or example, suppose we are estimating the cost to develop
the microprocessor-based communications processing software
for a highly ambitious new electronic funds transfer network
with high reliability, performance, development schedule, and
interface requirements. From Table IV, we determine
that these characteristics best fit the profile of an
embedded-mode project.

We next estimate the size of the product as 10000 delivered
source instructions, or 10 KOSI. From Table V, we then deter
mine that the nominal development effort for this Embedded
mode project is

TABLE IV
COCOMO SOFTWARE DEVELOPMENT MODES

t.tode

Feature Organic Semodetached Embedded

Organizational understanding of
product objectives Thorough Considerable General

Experience in working with related
software systems Extensive Considerable Moderate

Need for software conformance
with pre-established require·
ments Basic ConsIderable Full

Need for software conformance
with external interface specifica·
tions Basic ConsIderable Full

Concurrent development of associ·
ated new hardware and opera·
tional procedures Some Moderate Extensive

Need for innovative data processing
architectures. algorithms Minimal Some Considerable

Premium on early completion Low Medun High
Product size range <50 KOSI <300 KOSI All sizes
Examples Batch data Most transaction Large. complex

reduction processing sys· transaction
Scientific tems processing

models New OS. DBMS systems
Business Ambitious inven· AmbitiOUS. very

models tOf)'. production large as
Familiar control AVioniCs

as, compiler Somoie command· Amblhous com·
Simple inven· control mand·control

tory. produc·
tion control

www.manaraa.com

128

TABLE V
COCOMO NOMINAL EFFORT AND SCHEDULE EQUATIONS

DEVELOPMENT MODE NOMINAL EFFORT SCHEDULE

Organic (MM)NO\1 = 3.2(KDSI) 1.05 TDEV = 2.5(MMDEV)0.38

Semidetached (M~\)NO\\ = 3. O(KDSI) 1.12 TDEV = 2. 5(MMDEVl 0. 35

Embedded (\1.\\) NO\\ = :::.8(KDSI) 1.20 TDEV = 2. 5(MMDEV) 0.32

(K OS I = thousands of delivered source instructions)

2.8(10)1.20 = 44 man-months (MM).

Step 2-Detennine Effort Multipliers: Each of the 15 cost
driver attributes in COCOMO has a rating scale and a set of ef
fort multipliers which indicate by how much the nominal ef
fort estimate must be multiplied to account for the project's
having to work at its rating level for the attribute.

These cost driver attributes and their corresponding effort
multipliers are shown in Table VI. The summary rating scales
for each cost driver attribute are shown in Table VII, except
for the complexity rating scale which is shown in Table VIII
(expanded rating scales for the other attributes are provided
in [11 D.

The results of applying these tables to our microprocessor
communications software example are shown in Table IX. The
effect of a software fault in the electronic fund transfer system
could be a serious fmancialloss; therefore, the project's RELY
rating from Table VII is High. Then, from Table VI, the effort
multiplier for achieving a High level of required reliability is
1.15, or 15 percent more effort than it would take to develop
the software to a nominal level of required reliability.

www.manaraa.com

129

TABLE VI
INTERMEDIATE COCOMO SOFTWARE DEVELOPMENT EFFORT

MUL TIPLIERS

Ralings

Very Very Extra
Cosl Drivers low low Nominal High High High

P,oduct Attribute.
REl Y Requwed software reliability .75 .88 1.00 1.15 1.40
DATA Dala base size .IM 1.00 1.08 1.18
CPLX Producl complexity .70 .85 1.00 1.15 1.30 1.85

Computer Attributes
TIME ExecullOn time constraint 1.00 1.11 1.30 1.66
STOR Main storage constraint 1.00 U16 1.21 1.56
VtRT Virtual machine yolati~tY" .87 1.00 1.15 1.30
TURN Computer turnaround time .87 1.00 1.07 1.15

Personnel Attributes
ACAP Analyst capability 146 1.18 1.00 .86 .71
AEXP Applicalions experience 1.29 1.13 1.00 .91 .82
PCAP Programmer capability 142 1.17 1.00 .86 .70
VEXP Virtual machine experience- 1.21 1.10 1.00 .90
LEXP Programming language expenence 1.14 1.07 1.00 .95

PrOlBCt Attributes
MODP Use 01 modern programming practices 1.24 1.10 1.00 .91 .82
TOOL Use 01 software tools 1.24 1.10 1.00 .91 .83
SeED Rtlquired development schedule 1.23 1.08 1.00 1.D<t 1.10

• For a gNen sollwer. producl. \he underlying VIrtual IMCIww complex 01 hIt""'ere and IOIIw.a (OS,
DBMS. ale) " cells on 10 eccompI1sh lIS tasks

The effort multipliers for the other cost driver attributes
are obtained similarly, except for the Complexity attribute,
which is obtained via Table VIII. Here, we fIrst determine that
communications processing is best classifIed under device-de
pendent operations (column 3 in Table VIII). From this col
umn, we determine that communication line handling typi
cally has a complexity rating of Very High; from Table VI,
then, we determine that its corresponding effort multiplier is
1.30.

Step 3-Estimate Development Effort: We then compute
the estimated development effort for the microprocessor com
munications software as the nominal development effort (44
MM) times the product of the effort multipliers for the 15 cost

www.manaraa.com

T
A

B
L

E
 V

II

C
O

C
O

M
O

 S
O

F
T

W
A

R
E

 C
O

S
T

 D
R

IV
E

R
 R

A
T

IN
G

S

R
al

in
gs

C
oa

t
D

ri
ve

r
V

er
y

lo
w

lo

w

N
om

ln
.1

H

ig
h

V
er

y
H

ig
h

E
xt

ra
 H

Ig
h

P
ro

cb
:t

 a
tt

ri
b

u
te

s
R

E
L

Y

E
ff

ec
t:

 I
It

g
h

t
In

·
L

o
w

 •
•
 as

ily
 r

ll
C

O
Y

'
M

od
ar

at
a.

 r
8

C
O

Y
8

r'

H
ig

h
lln

en
ct

at

R
is

k
10

 h
um

an
 .
..

c:

on
ve

ni
en

ce

a
ra

b
l.

lo
s
 .
.
.

a
b

le
 l

o
ss

e
s

lo
ss

O
A

T
A

0

8
 b

yt
e

s
<

1
0

Pr

og
.

O
S

I
10

<~
<

10
0

l0
0<

~<
I0

00

Q
;'

I0
0

0

P

C
P

U
(

S
ee

 T
ab

le
 8

eo
m

.a
-a

tt
ri

bu
te

s
T

IM
E

<

 S
O

'll.
 u

se
 o

f
lO

Y
al

l·
7

0
%

8

5
%

9

5
 ..

ab

le
 e

xe
cu

tio
n

tim
e

S

T
O

R

<
 S

O
 ..

 u
se

 o
f 1

IY
IIiI

,
7

0
 ..

8

5
 ..

9
5
~

ab
le

 s
to

ra
g

e

V
lR

T

M
a

jo
r

ch
an

ge
 lO

Y
'

M
aj

or
:

8
m

o
n

th
s

M
aj

or
:

2
m

o
n

th
s

M
8

ja
r.

2
 .
.
.
.

er
y

1
2

 m
o

n
th

s
M

in
or

:
2

-,
<

S

M
In

or
:
1

-
'<

M

In
or

: 2
 d

lly
a

M
in

or
:

1
m

o
n

th

cu

0
T\

JR
N

In

le
ra

c\
lv

e

A_
. IumI

Iro
U

nd

4
-1

2
 h

ou
rs

>

1
2

 h
ou

rs

<
4

 h
ou

rs

.
.
.
.
.
.
.
.
 a

ll
rl

lu
l .
.

A
C

A
P

15

th
 p

er
ce

nt
ile

"
3

5
th

 p
e

rc
e

n
til

e

55
11

1
pe

rc
en

II
Ie

7

5
th

 p
er

ce
nl

le

80
Ih

 p
er

ce
n\

Ie

A
E)

(P

..
.

m
on

th
s

ex
·

1
ye

ar

3
yt

N
II

'I
8

ye
ar

.
12

 y
e
n

p

e
ri

e
n

ce

!'C
A

P

1
5

th
 p

e
rc

e
n

lil
a

"
3

5
th

 p
er

ce
nt

ile

5
5

th
 p

er
ce

nt
ile

7

5
th

 p
er

ce
nl

il
e

80
Ih

 p
er

ce
nI

IIe

V
E

)(P

<
 1

 m
o

n
th

 .x
p"

·
4

m
o

n
th

s
1

ve
er

3

yt
N

II
'I

Il
en

e.

lE
X

P
<

1
 m

o
n

th
 e

xp
'"

4
m

o
n

th
s

1
ye

ar

3
ye

ar
s

rie
nc

:e

P
ro

je
ct

 a
llr

ib
u

le
s

M
O

O
P

N

o
 u

se

B
eg

in
ni

ng
 u

se

S
om

e
..

..

a
-
e

tu
s
e

R

ou
II

ne
 .

..
.

T
O

O
l.

B

as
ic

 m
ic

ro
pr

o-
B

as
ic

 m
in

i
to

ol
s

B
as

ic
 m

id
i/

m
ax

i
S

lr
o

n
g

 m
ax

i p
IO

-
A

dd
 r

eq
un

.
e

e
ss

o
rt

o
o

ls

lo
ol

s
lI

'''
'''

''*
'II

.
m

an
IS

.d
es

Ig
n.

1 .
.
 11

oo
fs

.....

.....
.....

~
I
o
n

.....
..

IC
E

D

75
 ..

 o
f

no
m

in
eI

8

5
%

10

0 .
.

1
3

0
 ..

18

0 .
.

·T
_

, ..
..

 _
:
 ..

...
,."

' ..
...

. , .
..

 -
'.

-.
.:

y
. -

'1
0

 _
_

_
 '"

www.manaraa.com

131

TABLE VIII
COCOMO MODULE COMPLEXITY RATINGS VERSUS TYPE OF

MODULE

Oara
Control ComOUIAllOnal Qe,,'C&-deoendent Management

Rabng OperatIons OperaDons Operabons OperabOnS

Vwy low SlraIglltline code EvaluallOn of Simple Simple read. wnte Simple arrays in
WIlt! a few non· ~ .. g •• statements with muI rnemocy
".cad sp!,I,oper. A-B C· simple formats
.un: COs. (D-E)
CASes.
IFTHENELSEI.
Simple pnIdi-
CI_

Low Slraightfotw8ld Evaluation of mod- No cognIzance Single file SUbset·
nesting of SP op. arate-ievel ex· neaded of par· ting with no data
_tors. Mostly pressoons. e.g •• lieul., pro. SIrUC\Ure

--predic:ales
0- SORT CIIIIOr or 11O cnanges. no 8d-
(8··2-' .• 'A.c, device chIrIc· its. no intermedi-

teristics. 11O .18 files
done.t GETI
PUT IIMII. No
cognizance of
~

NomirIaI Mostly simpla ~ Usa of stancWd 110 PI oca""9 in- MuIti-ftIa input and
ing. Soma inter· math ana stalisti- dudes device singla tile out·
moduta control. cal rouanes. Be- selection. status put. Simple
0aciII0n tables sic I'IIIInXivector chackingand strUCtural

0Q8fa1lOnS error proc:asaing changes. simple
edits

High Hignly nested SP BasIC numanc:aI Operations at SpaaaI' purpose
operators WIth analySIS: mullIY.,· ptIysIcaI 110 SUbroubnel Ie·

many compound oata IntarllOlaoon. I_I (p/1ytiCII tivatad by data
predicates. orainary diffaran- storage addraa stream con-
Queue and stack IiaI equatiOns. Se- lrInSiaoons; tents. ComoIex
control. ConSld· sic truncatIOn. SMks. r£.:.Js. dIII_ •. tur·
arabia Intarmo- roundoff can- atel. OpamiZed ong at reconI
duIa control. cerns 110 avertap IIIYBI

Vwy hIgII Reentrant and reo 0itficuJt but SIl'UC' RouDn81 tor IntIII" A genaraIiZad. PI-
c:urIIV8 coding. turad N.A: _. rupt diagnosis. ramater-dnYen
Fixad-pnanty in· Singular matnx S8IVICIng. mask· fita structunng
tllfTUPl l1and~ng aquaaons. plll'lJll Ing. CommunI- reubne. Fila

difftll'llntlal aqua- ClIIon line budding. com·
DOnS llandIing mand proc:us.

ing.~

opamtZallon

Extra nlCJh Mulhpla resource OifficuIt and un· OevIc:e timmg-de- Highly CQUIlIad.
scIIaduling WIth struc:turec:I N.A.: pendent coding. dynallllC ,

dynalnlCllly n.gnly accurata mlCl"o-pro. bOnai strUC·
changIng pnon. analySIS of 1IOISy. grammad lUres. Natural
lies. Microcode- stoc:nasllC dala operabOns language data
I_I control management

~SP--IIRI9""'-1CJ

www.manaraa.com

C
o

st

D
ri

v
e

r

R
E

L
Y

D
A

T
A

C
P

L
X

T
IM

E

S
T

O
R

V
IR

T

T
U

R
N

A
C

A
P

~
E
X
P

p
e

A
P

V
E

X
P

L
E

X
P

M
O

D
P

T
O

O
L

S
C

E
D

TA
D

LE
IX

C

O
C

O
M

O
 C

O
S

T
 D

R
IV

E
R

 R
A

T
IN

G
S

:
M

IC
R

O
P

R
O

C
E

S
S

O
R

C

O
M

M
U

N
IC

A
T

IO
N

S
 S

O
F

T
W

A
R

E

S
it

u
a

ti
o

n

S
e

ri
o

u
s

fi
n

a
n

c
ia

l
c
o

n
s
e

q
u

e
n

c
e

s
 o

f
s
o

ft
w

a
re

 f
a

u
lt

s

2
0

.0
0

0
 b

y
te

s

C
o

m
m

u
n

ic
a

ti
o

n
s
 p

ro
c
e

s
s
in

g

W
ill

u

s
e

70

%
 o

f
a

v
a

il
a

b
le

 t
im

e

45
K

o

f
64

K

s
to

re
 (

70
%

)

B
a

s
e

d
 o

n
 c

o
m

m
e

rc
ia

l
m

ic
ro

p
ro

c
e

s
s
o

r
h

a
rd

w
a

re

T
w

o

h

o
u

r
a

v
e

ra
g

e
 t

u
rn

a
ro

u
n

d
 t

im
e

G
o

o
d

s
e

n
io

r
a

n
a

ly
s
ts

T
h

re
e

 y
e

a
rs

G
o

o
d

s
e

n
io

r
p

ro
g

ra
m

m
e

rs

S
ix

 m
o

n
th

s

T
w

e
lv

e
 m

o
n

th
s

M
o

s
t

te
c
h

n
iq

u
e

s
 i

n
 u

s
e

 o
v
e

r
o

n
e

 y
e

a
r

A
t

b
a

s
ic

 m
in

ic
o

m
p

u
te

r
tQ

O
I

le
v
e

l

N
in

e
 m

o
n

th
s

R
a

ti
n

g

H
ig

h

L
o

w

V
e

ry
 H

ig
h

H
ig

h

H
ig

h

N
o

m
in

a
l

N
o

m
in

a
l

H
ig

h

N
o

m
in

a
l

H
ig

h

L
o

w

N
o

m
in

a
l

H
ig

h

L
o

w

N
o

m
in

a
l

E
ff

o
rt

 a
d

ju
s
tm

e
n

t
fa

c
to

r
(p

ro
d

u
c
t

o
f

e
ff

o
rt

 m
u

lt
ip

li
e

rs
)

E
ff

o
rt

M

u
lt

ip
li
e

r

1.
 1

5

0
.9

4

1.
 3

0

1.
 1

1

1.
 0

6

1.
 0

0

1.
 0

0

0
.8

6

1.
 0

0

0.
86

1.
 1

0

1.
 0

0

0
.9

1

1.
 1

0

1.
 0

0

1.
 3

5

.....

~

www.manaraa.com

133

driver attributes in Table IX (1.35, in Table IX). The resulting
estimated effort for the project is then

(44 MM) (1.35) = 59 MM.

Step 4-Estimate Related Project Factors: COCOMO has
additional cost estimating relationships for computing the re
sulting dollar cost of the project and for the breakdown of
cost and effort by life-cycle phase (requirements, design, etc.)
and by type of project activity (programming, test planning;
management, etc.). Further relationships support the estima
tion of the project's schedule and its phase distribution. For
example, the recommended development schedule can be ob
tained from the estimated development man-months via the
embedded-mode schedule equation in Table V:

TDEV = 2.5(59)°·32 = 9 months.

As mentioned above, COCOMO also supports the most com
mon types of sensitivity analysis and tradeoff analysis involved
in scoping a software project. For example, from Tables VI
and VII, we can see that providing the software developers
with an interactive computer access capability (Low turn
around time) reduces the TURN effort multiplier from 1.00 to
0.87, and thus reduces the estimated project effort from 59
MMto

(59 MM) (0.87) = 51 MM.

The COCOMO model has been validateq with respect to a
sample of 63 projects representing a wide variety of business,
scientific, systems, real-time, and support software projects.
For this sample, Intennediate COCOMO estimates come
within 20 percent of the actuals about 68 percent of the time
(see Fig. 7). Since the residuals roughly follow a normal
distribution, this is equivalent to a standard deviation of
roughly 20 percent of the project actuals. This level of accu
racy is representative of the current state of the art in soft
ware cost models. One can do somewhat better with the aid

www.manaraa.com

SOOOr

;!COO

1000

~ soo
~
j
:

200, ~
"

lOO~ S
!.

" 3
~

50

20

10

5

Fig. 7.

o

20

134

o - O'9l"OC ,"ode I. - Semideuc.~e.3 mode
6 - EmIMdclId 'ft0Cll

50 1~ 200 500 1000 200Q SOOO 10.000

Intwmldiaw COCOMO 1It""'ncI _till

Intermediate COCOMO estimates versus project actuals.

of a calibration coefficient (also a COCOMO option), or within
a limited applications context, but it is difficult to improve
significantly on this level of accuracy while the accuracy of
software data collection remains in the "±20 percent" range.

A Pascal version of COCOMO is available for a nominal dis
tribution charge from the Wang Institute, under the name WI
COMO [18].

Recent Software Cost Estimation Models

Most of the recent software cost estimation models tend to
follow the Doty and COCOMO models in having a nominal
scaling equation of the form MMNOM = c(KDSI}X and a set
of multiplicative effort adjustment factors determined by a
number of cost driver attribute ratings. Some of them use the
Rayleigh curve approach to estimate distribution across the

www.manaraa.com

135

software life-cycle, but most use a more conservative effort/
schedule tradeoff relation than the SLIM model. These aspects
have been summarized for the various models in Table II and
Fig. 5.

The Bailey-Basili meta-model [4] derived the scaling equa
tion

MMNOM = 3.5 + 0.73 (KDSI)1.16

and used two additional cost driver attributes (methodology
level and complexity) to model the development effort of 18
projects in the NASA-Goddard Software Engineering Labora
tory to within a standard deviation of 15 percent. Its accuracy
for other project situations has not been determined.

The Grumman SOFCOST Model [19] uses a similar but un
published nominal effort scaling equation, modified by 30
multiplicative cost driver variables rated on a scale of 0 to 10.
Table II includes a summary of these variables.

The Tausworthe Deep Space Network (DSN) model [50]
uses a linear scaling equation (MMNOM = a(KDSI)1.o) and a
similar set of cost driver attributes, also summarized in Table
II. It also has a well-considered approach for determining the
equivalent KDSI involved in adapting existing software within
a new product. It uses the Rayleigh curve to determine the
phase distribution of effort, but uses a considerably more con
servative version of the SLIM effort-schedule tradeoff relation
ship (see Fig. 5).

The Jensen model [30], [31] is a commercially available
model with a similar nominal scaling equation, and a set of cost
driver attributes very similar to the Doty and COCOMO models
(but with different effort multiplier ranges); see Table II. Some
of the multiplier ranges in the Jensen model vary as functions
of other factors; e.g., increasing access to computer resources
widens the multiplier ranges on such cost drivers as personnel
capability and use of software tools. It uses the Rayleigh curve
for effort distribution, and a somewhat more conservative ef-

www.manaraa.com

136

fort-schedule tradeoff relation than SLIM (see Fig. 5). As with
the other commercial models, the Jensen model produces a
number of useful outputs on resource expenditure rates, prob
ability distributions on costs and schedules, etc.

C Outstanding Research Issues in Software Cost Estimation

Although a good deal of progress has been made in software
cost estimation, a great deal remains to be done. This section
updates the state-of-the-art review published in [11] , and sum
marizes the outstanding issues needing further research:

1) Software size estimation;
2) Software size and complexity metrics;
3) Software cost driver attributes and their effects;
4) Software cost model analysis and refmement;
5) Quantitative models of software project dynamics;
6) Quantitative models of software life-cycle evolution;
7) Software data collection.

1) Software Size Estimation: The biggest difficulty in us
ing today's algorithmic software cost models is the problem of
providing sound sizing estimates. Virtually every model re
quires an estimate of the number of source or object instruc
tions to be developed, and this is an extremely difficult quan
tity to determine in advance. It would be most useful to have
some formula for determining th~ size of a software product in
terms of quantities known early in the software life cycle, such
as the number and/or size of the fIles, input formats, reports,
displays, requirements specification elements, or design specifi
cation elements.

Some useful steps in this direction are the function-point
approach in [2] and the sizing estimation model of [29] , both
of which have given reasonably good results for small-to-medium
sized business programs within a single data processing organiza
tion. Another more general approach is given by DeMarco in
[17]. It has the advantage of basing its sizing estimates on the
properties of specifications developed in conformance with

www.manaraa.com

137

DeMarco's paradigm models for software specifications and de
signs: number of functional primitives, data elements, input
elements, output elements, states, transitions between states,
relations, modules, data tokens, control tokens, etc. To date,
however, there has been relatively little calibration of the for
mulas to project data. A recent IBM study [14] shows some
correlation between the number of variables defined in a state
machine design representation and the product size in source
instructions.

Although some useful results can be obtained on the soft
ware sizing problem, one should not expect too much. A wide
range of functionality can be implemented beneath any given
specification element or I/O element, leading to a wide range
of sizes (recall the uncertainty ranges of this nature in Fig. 3).
For example, two experiments, involving the use of several
teams developing a software program to the same overall
functional specification, yielded size ranges of factors of 3 to
5 between programs (see Table X).

TABLE X
SIZE RANGES OF SOFTWARE PRODUCTS PERFORMING

SAME FUNCTION

No. of Size Range
Experiment Product Teams (source-instr.)

Weinberg Simultaneous 6 33-165
& Schulman [55] linear equations

Boehm, Gray, Interactive 7 1514-4606
& Seewaldt [13] cost model

The primary implication of this situation for practical soft
ware sizing and cost estimation is that there is no royal road to
software sizing. This is no magic formula that will provide an
easy and accurate substitute for the process of thinking
through and fully understanding the nature of the software
product to be developed. There are still a number of useful

www.manaraa.com

138

things that one can do to improve the situation, including the
following.

• Use techniques which explicitly recognize the ranges of
variability in software sizing. The PERT estimation technique
[56] is a good example.

• Understand the primary sources of bias in software
sizing estimates. See [11, ch. 21] .

• Develop and use a corporate memory on the nature and
size of previous software products.

2) Software Size and Complexity Metrics: Delivered source
instructions (DSI) can be faulted for being too low-level a
metric for use in early sizing estimation. On the other hand,
DSI can also be faulted for being too high-level a metric for
precise software cost estimation. Various complexity metrics
have been formulated to more accurately capture the relative
information content of a program's instructions, such as the
Halstead Software Science metrics [24], or to capture the rela
tive· control complexity of a program, such as the metrics for
mulated by McCabe in [39]. A number of variations of these
metrics have been developed; a good recent survey of them is
given in [26] .

However, these metrics have yet to exhibit any practical
superiority to DSI as a predictor of the relative effort required
to develop software. Most recent studies [48], [32] show a
reasonable correlation between these complexity metrics and
development effort, but no better a correlation than that be
tween DSI and development effort.

Further, the recent [25] analysis of the software science re
sults indicates that many of the published software science
"successes" were not as successful as they were previously con
sidered. It indicates that much of the apparent agreement be
tween software science formulas and project data was due to
factors overlooked in the data analysis: inconsistent defmi
tions and interpretations of software science quantities, unreal
istic or inconsistent assumptions about the nature of the proj-

www.manaraa.com

139

ects analyzed, overinterpretation of the significance of statisti
cal measures such as the correlation coefficient, and lack of in
vestigation of alternative explanations for the data. The software
science use of psychological concepts such as the Stroud num
ber have also been seriously questioned in [16] .

The overall strengths and difficulties of software science are
summarized in [47]. Despite the difficulties, some of the soft
ware science metrics have been useful in such areas as identify
ing error-prone modules. In general, there is a strong intuitive
argument that more definitive complexity metrics will eventu
ally serve as better bases for definitive software cost estimation
than will DS!. Thus, the area continues to be an attractive one
for further research.

3) Software Cost Driver A ttributes and Their Effects: Most
of the software cost models discussed above contain a selec
tion of cost driver attributes and a set of coefficients, func
tions, or tables representing the effect of the attribute on soft
ware cost (see Table II). Chapters 24-28 of [11] contain
summaries of the research to date on about 20 of the most
significant cost driver attributes, plus statements of nearly 100
outstanding research issues in the area.

Since the publication of [11] in 1981, a few new results
have appeared. Lawrence [35] provides an analysis of 278
business data processing programs which indicate a fairly uni
form development rate in procedure lines of code per hour,
some significant effects on programming rate due to batch
turnaround time and level of experience, and relatively little
effect due to use of interactive operation and modern pro
gramming practices (due, perhaps, to the relatively repetitive
nature of the software jobs sampled). Okada and Azuma [42]
analyzed 30 CADjCA.t\1 programs and found some significant
effects due to type of software, complexity, personnel skill
level, and requirements volatility.

4) Software Cost Model Analysis and Refinement: The
most useful comparative analysis of software cost models to

www.manaraa.com

140

date is the Thibodeau [52] study performed for the U.S. Air
Force. This study compared the results of several models (the
Wolverton, Doty, PRICE S, and SLIM models discussed earlier,
plus models from the Boeing, SOC, Tecolote, and Aerospace
corporations) with respect to 45 project data points from
three sources.

Some generally useful comparative results were obtained,
but the results were not defmitive, as models were evaluated
with respect to larger and smaller subsets of the data. Not too
surprisingly, the best results were generally obtained using
models with calibration coefficients against data sets with few
points. In general, the study concluded that the models with
calibration coefficients achieved better results, but that none
of the models evaluated were sufficiently accurate to be used
as a defmitive Air Force software cost estimation model.

Some further comparative analyses are currently being con
ducted by various organizations, using the database of 63 soft
ware projects in [11], but to date none of these have been
published.

In general, such evaluations play a useful role in model re
finement. As certain models are found to be inaccurate in cer
tain situations, efforts are made to determine the causes, and
to refme the model to eliminate the sources of inaccuracy.

Relatively less activity has been devoted to the formulation,
evaluation, and refmement of models to cover the effects of
more advanced methods of software development (prototyp
ing, incremental development, use of application generators,
etc.) or to estimate other software-related life-cycle costs (con
version, maintenance, installation, training, etc.). An exception
is the excellent work on software conversion cost estimation
performed by the Federal Conversion Support Center [28].
An extensive model to estimate avionics software support
costs using a weighted-multiplier technique has recently been
developed [49]. Also, some initial experimental results have
been obtained on the quantitative impact of prototyping in

www.manaraa.com

141

[13] and on the impact of very high level nonprocedural lan
guages in [58]. In both studies, projects using prototyping and
VHLL's were completed with significantly less effort.

5) Quantitative Models of Software Project Dynamics: Cur
rent software cost estimation models are limited in their abil
ity to represent the internal dynamics of a software project,
and to estimate how the project's phase distribution of effort
and schedule will be affected by environmental or project
management factors. For example, it would be valuable to
have a model which would accurately predict the effort and
schedule distribution effects of investing in more thorough
design verification, of pursuing an incremental development
strategy, of varying the staffmg rate or experience mix, of re
ducing module size, etc.

Some current models assume a universal effort distribution,
such as the Rayleigh curve [44] or the activity distributions in
[57], which are assumed to hold for any type of project situa
tion. Somewhat more realistic, but still limited are models
with phase-sensitive effort multipliers such as PRICE S [22]
and Detailed COCOMO [11].

Recently, some more realistic models of software project
dynamics have begun to appear, although to date none of
them have been calibrated to software project data. The Phister
phase-by-phase model in [43] estimates the effort and schedule
required to design, code, and test a software product as a func
tion of such variables as the staffmg level during each phase,
the size of the average module to be developed, and such
factors as interpersonal communications overhead rates and
error detection rates. The Abdel Hamid-Madnick model [I],
based on Forrester's System Dynamics world-view, estimates
the time distribution of effort, schedule, and residual defects
as a function of such factors as staffmg rates, experience mix,
training rates, personnel turnover, defect introduction rates,
and initial estimation errors. Tausworthe [51] derives and
calibrates alternative versions of the SLIM effort-schedule

www.manaraa.com

142

tradeoff relationship, using an intercommunication-overhead
model of project dynamics. Some other recent models of
software project dynamics are the Mitre SWAP model and
the Duclos [21] total software life-cycle model.

6) Quantitative Models of Software Life-Cycle Evolution:
Although most of the software effort is devoted to the soft
ware maintenance (or life-cycle support) phase, only a few sig
nificant results have been obtained to date in formulating
quantitative models of the software life-cycle evolution proc
ess. Some basic studies by Belady and Lehman analyzed data
on several projects and derived a set of fairly general "laws of
program evolution" [7], [37]. For example, the first of these
laws states:

"A program that is used and that as an implementation
of its specification reflects some other reality, undergoes
continual change or becomes progressively less useful.
The change or decay process continues until it is judged
more cost effective to replace the system with a re
created version."

Some general quantitative support for these laws was obtained
in several studies during the 1970's, and in more recent studies
such as [33]. However, efforts to refme these general laws into
a set of testable hypotheses have met with mixed results. For
example, the Lawrence [36] statistical analysis of the Belady
Lahman data showed that the data supported an even stronger
form of the first law ("systems grow in size over their useful
life"); that one of the laws could not be formulated precisely
enough to be tested by the data; and that the other three laws
did not lead to hypotheses that were supported by the data.

However, it is likely that variant hypotheses can be found
that are supported by the data (for example, the operating
system data supports some of the hypotheses better than does
the applications data). Further research is needed to clarify
this important area.

www.manaraa.com

143

7) Software Data Collection: A fundamental limitation to
significant progress in software cost estimation is the lack of
unambiguous, widely-used standard defInitions for software
data. For example, if an organization reports its "software
development man-months," do these include the effort de
voted to requirements analysis, to training, to secretaries, to
quality assurance, to technical writers, to uncompensated
overtime? Depending on one's interpretations, one can easily
cause variations of over 20 percent (and often over a f.actor I

of 2) in the meaning of reported "software development man
months" between organizations (and similarly for "delivered
instructions," "complexity," "storage constraint," etc.) Given
such uncertainties in the ground data, it is not surprising that
software cost estimation models cannot do much better than
"within 20 percent of the actuals, 70 percent of the time."

Some progress towards clear software data defmitions has
been made. The IBM FSD database used in [53] was carefully
collected using thorough data definitions, but the detailed
data and defmitions are not generally available. The NASA
Goddard Software Engineering Laboratory database [5], [6],
[40] and the COCOMO database [11] provide both clear
data definitions and an associated project database which are
available for general use (and reasonably compatible). The re
cent Mitre SARE report [59] provides a good set of data defi
nitions.

But there is still no commitment across organizations to
establish and use a set of clear and uniform software data defi
nitions. Until this happens, our progress in developing more
precise software cost estimation methods will be severely lim
ited.

IV. SOFTWARE ENGINEERING ECONOMICS BENEFITS AND

CHALLENGES

This fmal section summarizes the benefits to software engi
neering and software management provided by a software engi
neering economics perspective in general and by software cost

www.manaraa.com

144

estimation technology in particular. It concludes with some
observations on the major challenges awaiting the field.

Benefits of a Software Engineering Economics Perspective

The major benefit of an economic perspective on software
engineering is that it provides a balanced view of candidate
software engineering solutions, and an evaluation framework
which takes account not only of the programming aspects of
a situation, but also of the human problems of providing the
best possible information processing service within a resource
limited environment. Thus, for example, the software engi
neering economics approach does not say, "we should use
these structured structures because they are mathematically
elegant" or "because they run like the wind" or "because
they are part of the structured revolution." Instead, it says
"we should use these structured structures because they pro
vide people with more benefits in relation to their costs
than do other approaches." And besides the framework, of
course, it also provides the techniques which help us to arrive
at this conclusion.

Benefits of Software Cost Estimation Technology
The major benefit of a good software cost estimation model

is that it provides a clear and consistent universe of discourse
within which to address a good many of the software engineer
ing issues which arise throughout the software life cycle. It can
help people get together to discuss such issues as the following.

• Which and how many features should we put into the
software product?

• Which features should we put in first?
• How much hardware should we acquire to support the

software product's development, operation, and maintenance?
• How much money and how much calendar time should

we allow for software development?

www.manaraa.com

145

• How much of the product should we adapt from exist
ing software?

• How much should we invest in tools and training?
Further, a well-dermed software cost estimation model can

help avoid the frequent misinterpretations, underestimates,
overexpectations, and outright buy-ins which still plague the
software field. In a good cost-estimation model, there is no
way of reducing the estimated software cost without changing
some objectively verifiable property of the software project.
This does not make it impossible to create an unachievable
buy-in, but it significantly raises the threshold of credibility.

A related benefit of software cost estimation technology
is that it provides a powerful set of insights on how a software
organization can improve its productivity. Many of a software
cost model's cost-driver attributes are management control
lables: use of software tools and modern programming prac
tices, personnel capability and experience, available computer
speed, memory, and turnaround time, software reuse. The cost
model helps us determine how to adjust these management
controllables to increase productivity, and further provides an
estimate of how much of a productivity increase we are likely
to achieve with a given level of investment. For more informa
tion on this topic, see [11, ch. 33], [12] and the recent plan
for the U.S. Department of Defense Software Initiative [20].

Finally, software cost estimation technology provides an
absolutely essential foundation for software project planning
and control. Unless a software project has clear definitions of
its key milestones and realistic estimates of the time and
money it will take to achieve them, there is no way that a
project manager can tell whether his project is under control
or not. A good set of cost and schedule estimates can provide
realistic data for the PERT charts, work breakdown structures,
manpower schedules, earned value increments, etc., necessary
to establish management visibility and control.

www.manaraa.com

146

Note that this opportunity to improve management visibil
ity and control requires a complementary management com
mitment to defIne and control the reporting of data on software
progress and expenditures. The resulting data are therefore
worth collecting simply for their management value in compar
ing plans versus achievements, but they can serve another valu
able function as well: they provide a continuing stream of cali
bration data for evolving a more accurate and refined software
cost estimation models.

Software Engineering Economics Challenges

The opportunity to improve software project management
decision making through improved software cost estimation,
planning, data collection, and control brings us back full-circ1e
to the original objectives of software engineering economics:
to provide a better quantitative understanding of how software
people make decisions in resource-limited situations.

The more clearly we as software engineers can understand
the quantitative and economic aspects of our decision situa
tions, the more quickly we can progress from a pure seat-of
the-pants approach on software decisions to a more rational
approach which puts all of the human and economic decision
variables into clear perspective. Once these decision situations
are more clearly illuminated, we can then study them in more
detail to address the deeper challenge: achievin~ a quantitative
understanding of how people work together in the software
engineering process. _

- Given the rather scattered and imprecise data currently
available in the software engineering field, it is remarkable how
much progress has been made on the software cost estimation
problem so far. But, there is not much further we can go until
better data becomes available. The software field cannot hope
to have its Kepler or its Newton until it has had its army of
Tycho Brahes, carefully preparing the well-defmed observa
tional data from which a deeper set of scientific insights may
be derived.

www.manaraa.com

147

REFERENCES

[I] T. K. Abdel-Hamid and S. E. Madnick, "A model of software
project management dynamics," in Proc. IEEE COMPSAC 82,
Nov. 1982, pp. 539-554.

[2] A. J. Albrecht, "Measuring Application Development Productiv
ity," in SHARE-GUIDE. 1979, pp. 83-92.

[3] J. D. Aron, "Estimating resources for large programming sys
terns." NATO Sci. Committee, Rome, Italy, Oct. 1969.

[4] J. J. Bailey and V. R. Basili, "A meta-model for software devel
opment resource expenditures," in Proc. 5th Int. Conf. Software
Eng., IEEE/ACM/NBS, Mar. 1981, pp. 107-116.

[5] V. R. Basili, • 'Tutorial on models and metrics for software and
engineering," IEEE Cat. EHO-167-7, Oct. 1980.

[6] V. R. Basili and D. M. Weiss, "A methodology for collecting valid
software engineering data," Univ. Maryland Techno!' Rep. TR-
1235, Dec. 1982.

[7] L. A. Belady and M. M. Lehman, "Characteristics of large sys
terns," in Research Directions in Software Technology, P. Wegner,
Ed. Cambridge, MA: MIT Press,_1979.

[8] H. D. Benington, "Production of large computer programs," in
Proc. ONR Symp. Advanced Programming Methods for Digital
Computers, June 1956, pp. 15-27.

[9] R. K. D. Black, R. P. Curnow, R. Katz, and M. D. Gray, "BCS
software production data," Boeing Comput. Services, Inc., Final
Tech. Rep., RADC-TR-77-116, NTIS AD-A039852, Mar. 1977.

[10] B. W. Boehm, "Software and its impact: A quantitative assess
ment," Datamation, pp. 48-59, May 1973.

ell] '--, Software Engineering Economics. Englewood Cliffs; NJ:
Prentice-Hall, 1981.

[12] B. W. Boehm, J. F. Elwell, A. B. Pyster, E. D. Stuckle, and R. D.
Williams, "The TRW software productivity system," in Proc.
IEEE 6th Int. Conf. Software Eng., Sept. 1982.

[13] B. W. Boehm, T. E. Gray, and T. Seewaldt, "Prototyping vs.
specifying: A multi-project experiment," IEEE Trans. Software
Eng., to be published.

[14] R. N. Britcher and J. E. Gaffney, "Estimates of software size from
state machine designs," in Proc. NASA-Goddard Software Eng.
Workshop, Dec. 1982.

(15) W. M. Carriere and R. Thibodeau, "Development of a logistics
software cost estimating technique for foreign military sales,"
General Res. Corp., Rep. CR-3-839, June 1979.

[16] N. S. Coulter, "Software science and cognitive psychology,"
IEEE Trans. Software Eng., pp. 16(~-171, Mar. 1983.

[17] T. DeMarco, Controlling Software Projects. New York: Your
don, 1982.

www.manaraa.com

148

[18] M. Demshki, D. Ligett, B. Linn, G. McCluskey, and R. Miller,
"Wang Institute cost model (WICOMO) tool user's manual,"
Wang Inst. Graduate Studies, Tyngsboro, MA, June 1982.

[19] H. F. Dircks, "SOFCOST: Grumman's software cost eliminating
model," in IEEE NAECON 1981, May 1981.

[20] L. E. Druffel, "Strategy for DoD software initiative," RADCI
DACS, Griffiss AFB, NY, Oct. 1982.

[21] L. C. Duclos, "Simulation model for the life-cycle of a software
product: A quality assurance approach," Ph.D. dissertation, Dep.
Industrial and Syst. Eng., Univ. Southern California, Dec. 1982.

f22] F. R. Freiman and R. D. Park, "PRICE software model-Version
3: An overview," in Proc. IEEE-PINY Workshop on Quantitative
Software Models, IEEE Cat. THOO67-9, Oct. 1979, pp. 32-41.

[23] R. Goldberg and H. Lorin, The Economics 0/ Information Process-
ing. New York: Wiley, 1982.

[24] M. H. Halstead, Elements 0/ Software Science. New York: Else
vier, 1977.

[25] P. G. Hamer and G. D. Frewin, "M. H. Halstead's software
science-A critical examination," in Proc. IEEE 6th Int. Coni.
Software Eng., Sept. 1982, pp. 197-205.

[26] W. Harrison, K. Magel, R. Kluczney, and A. DeKock, "Applying
software complexity metrics to program maintenance," Computer,
pp. 65-79, Sept. 1982.

[27] J. R. Herd, J. N. Postak, W. E. Russell, and K. R. Stewart,
"Software cost estimation study-Study results," Doty Associates,
Inc., Rockville, MD, Final Tech. Rep. RADC-TR-77-220, vol. I
(of two), June 1977.

[28] C. Houtz and T. Buschbach, "Review and analysis of conversion
cost-estimating techn:iques," GSA Federal Conversion Support
Center, Falls Church, VA, Rep. GSA/FCSC-81/001, Mar. 1981.

[29] M. Itakura and A. Takayanagi, " A model for estimating program
size and its evaluation," in Proc. IEEE 6th Software Eng., Sept.
1982, pp. 104-109.

[30] R. W. Jensen, "An improved macrolevel software development
resource estimation model," in Proc. 5th ISPA Conf., Apr. 1983,
pp. 88-92. .

[31] R. W. Jensen and S. Lucas, "Sensitivity analysis of the Jensen
software model," in Proc. 5th ISPA Conf., Apr. 1983, pp. 384-
389.

[32] B. A. Kitchenham, "Measures of programming complexity," ICL
Tech. i., pp. 298-316, May 1981.

[33] --, "Systems evolution dynamics ofVME/B," ICL Tech. J., pp.
43-57, May 1982.

[34] W. W. Kuhn, "A software lifecycle case study using the PRICE
model," in Proc. IEEE NAECON, May 1982.

[35] M. J. Lawrence, "Programming methodology, organizational en
vironment,and programming productivity," J. Syst. Software, pp.
257-270, Sept. 1981.

www.manaraa.com

149

[36] --, "An examination of evolution dynamics, t, in Proc. IEEE 6th
Int. Con/. Software Eng .. Sept. 1982, pp. 188-196.

[37] M. M. Lehman, "Programs, life cycles, and laws of software
evolution," Proc. IEEE. pp. 1060-1076, Sept. 1980.

[38] R. D. Luce and H. Raiffa, Games and Decisions. New York:
Wiley, 1957.

[39] T. J. McCabe, "A complexity measure," IEEE Trans. Software
Eng .• pp. 308-320, Dec. 1976.

[40] F. E. McGarry~ "Measuring software development technology:
What have we learned in six years," in Proc. NASA-Goddard
Software Eng. Workshop. Dec. 1982.

[41] E. A. Nelson, "Management handbook for the estimation of com
puter programming costs," Syst. Develop. Corp., AD-A648750,
Oct. 31, 1966.

[42] M. Okada and M. Azuma, "Software development estimation
study-A model from CAD/CAM system development experi
ences," in Proc. IEEE COMPSAC 82. Nov. 1982, pp. 555-564.

[43] M. Phister, Jr., "A model of the software development process,"
J. Syst. Software, pp. 237-256, Sept. 1981.

(44J L. H. Putnam, "A general empirical solution to the macro software
sizing and estimating problem," IEEE Trans. SoJtware EII8 .• pp.
345-361 , July 1978.

[45) L. H. Putnam and A. Fitzsimmons, "Estimating software costs,"
Datamation, pp. 189-198, Sept. 1979; continued in DllIamation,
pp. 171-178, Oct. 1979 and pp. 137-140, Nov. 1979.

[46J L.H. Putnam, "The real economics of software development," in
The Economics of Information Processing, R. Goldberg and H.
Lorin. New York: Wiley, 1982.

[47] V. Y. Shen, S. D. Conte, and H. E. Dunsmore, "Software science
revisited: A critical analysis of the theory and its empirical sup
port," IEEE Trans. Software Eng., pp. 155-165, Mar. 1983.

[48] T. Sunohara, A. Takano, K. Uehara, and T. Ohkawa, "Program
complexity measure for software development management," in
Proc. IEEE 5th Int. Con/. Software Eng., Mar. 1981, pp. 100-106.

[49] SYSCON Corp., "Avionics software support cost model," USAF
Avionics Lab., AFWAL-TR-1173, Feb. I, 1983.

[50J R. C. Tausworthe, "Deep space network software cost estimation
model," Jet Propulsion Lab., Pasadena, CA, 1981.

[51 J --, "Staffing implications of software productivity m(~dels," in
Proc. 7th Annu. Software Eng. Workshop, NASA/Goddard, Green
belt, MD, Dec. 1982.

[52] R. Thibodeau, "An evaluation of software cost estimating mod
els," General Res. Corp., Rep. TlO-2670, Apr. 1981.

[53] C. E. Walston and C. P. Felix, "A method of programming meas
urement and estimation," IBM Sysl. 1 .. vol. 16, no. I, pp. 54-73,
1977.

www.manaraa.com

150

[54J G. F. Weinwurm, Ed., On the Management oj Computer Program
ming. New York: Auerbach, 1970.

[55J G. M. Weinberg and E. L. Schulman, "Goals and performance in
comput~r programming," Human Factors, vol. 16, no. I, pp.
70-77, 1914.

[56] J. D. Wiest and F. K. Levy, A Management Guide to PERTICPM.
Englewood Cliffs, NJ: Prentice-Hall, 1977.

r57J R. W. Wolverton, "The cost of developing large-scale software,"
IEEE 'fralls . Comput., pp. 615-636, June 1974.

158) E. Harel and E. R. McLean, "The effects of using a nonprocedural
computer language on programmer productivity," UCLA Inform.
Sci . Working Paper 3-83, Nov. 1982.

[591 R. L. Dumas, "Final report: Software acquisition resource ex
penditure (SARE) data collection methodology," MITRE Corp.,
MTR 9031 , Sept. 1983.

Barry W. Boehm re~eived the B.A. degree in
mathematics from Harvard University, Cam
bridge, MA, in 1957 and the M.A. and Ph.D.
degrees from the University of California, Los
Angeles, in 1961 and 1964, respectively .

From 1978 to 1979 he was a Visiting Professor
of Computer Science at the University Of South
ern California. He is currently a Visiting Profes
sor at the University of California, Los Angeles,
and Chief Engineer of TRW's Software Informa
tion Systems Division. He was previously Head

of the Information Sciences Department at The Rand Corporation, and
Director of the 1971 Air Force CCIP-85 study. His responsibilities at
TRW include direction of TRW's internal software R&D program, of
contract software technology projects, of the TRW software development
policy and standards program, of the TRW Software Cost Methodology
Program, and the TRW Software Productivity Program. His most recent
book is Software Engineering Economics, by Prentice-Hall .

Dr. Boehm is a member of the IEEE Computer Society and the
Association for Computing Machinery! and an Associate Fellow of the
American Institute of Aeronautics and Astronautics.

www.manaraa.com

Fred Brooks

G.H. Mealy, B.I. Witt, W.A. Clark
The Functional Structure of OS/360

IBM Systems Journal, Vol. 50), 1966
pp.2-51

www.manaraa.com

In the de8ign of OS/360, a modular operating SY8tem being implemented
for a range of SYSTEM/360 configurations, the fundamental objective
has been to bring a variety of application classes under the domain
of one coherent 8Y8tem. The conceptual framework of the SY8tem as
a whole, as weU as the most distinctive 8tructural features of the
control program, are heavily influenced by this objective.

The purp08e of thi8 paper is to pre8ent the planned 8Y8tem in a
unified perspective by discussing design objective8, historical back
ground, and structural concepts and functions. The scope of the
system is surveyed in Part I, whereas the rest of the paper i8 devoted
to the control program. Design feature8 relevant to job 8cheduling
and task management are treated in Part II. The third part di8cusses
the principal activitie8 involved in cataloging, storing, and retrieving
data and programs.

The functional structure of OS/360

Part I Introductory survey
byG. H. Mealy

Part n Job and task management
by B. I. Witt

Part m Data management
by W. A. Clark

Individual acknowledgements cannot feasibly be given. Contributing to 08/360

are several IBM programming centers in America and Europe. The authors
participated in the design of the control program.

www.manaraa.com

155

A brief outline of the structural elements of OS/360 is given in prepara
tion for the subsequent sections on control-program functions.

Emphasis is placed on the functional scope of the system, on the
motivating objectives and basic design concepts, and on the de.'Jign
approach to modularity.

The functional structure of 08/360
Part I Introductory survey

by G. H. Mealy

The environment that may confront an operating system has
lately undergone great change. For example, in its several compat
ible models, SYSTEM/360 spans an entire spectrum of applications
and offers an unprecedented range of optional devices. 1 It need
come as no surprise, therefore, that oS/36o--the Operating System
for SYSTEM/36o-evinces more novelty in its scope than in its func
tional objectives.

In a concrete sense, OS/360 consists of a library of programs.
In an abstract sense, however, the term 05/360 refers to one articu
lated response to a composite set of needs. With integrated vo
cabularies, conventions, and modular capabilities, OS/360 is de
signed to answer the needs of a SYSTEM/360 configuration with a
standard instruction set and thirty-two thousand or more bytes
of main storage.2

The main purpose of this introductory survey is to establish
the scope of OS/360 by viewing the subject in a number of different
perspectives: the historical background, the design objectives, and
the functional types of program packages that are provided.
An effort is made to mention problems and design compromises,
i.e., to comment on the forces that shaped the system as a whole.

Basic objectives

The notion of an operating system dates back at least to 1953 and

www.manaraa.com

throughput

response

time

156

MIT's Summer Session Computer and Utility System.3 Then,
as now, the operating system aimed at non-stop operation over a
span of many jobs and provided a computer-accessible library
of utility programs. A number of operating systems came into use
during the last half of the decade.4 In that all were oriented toward
overlapped setup in a sequentially executed job batch, they may be
termed "first generation" operating systems.

A significant characteristic of batched-job operation has been
that each job has, more or less, the entire machine to itself, save
for the part of the system permanently resident in main storage.
During the above-mentioned period of time, a number of large
systems-typified by SAGE, MERCURY, and SABRE-were developed
along other lines; these required total dedication of machine re
sources to the requirements of one "real-time" application. It is
interesting that one of the earliest operating systems, the Utility
Control Program developed by the Lincoln Laboratory, was
developed solely for the checkout of portions of the SAGE system.
By and large, however, these real-time systems bore little re
semblance to the first generation of operating systems, either
from the point of view of intended application or system structure.

Because the basic structure of OS/360 is equally applicable to
batched-job and real-time applications, it may be viewed as one
of the first instances of a "second-generation" operating system.
The new objective of such a system is to accommodate an environ
ment of diverse applications and operating modes. Although not
to be discounted in importance, various other objectives are not
new-they have been recognized to some degree in prior systems.
Foremost among these secondary objectives are:
• Increased throughput
• Lowered response time
• Increased programmer productivity
• Adaptability (of programs to changing resources)
• Expandability
OS/360 seeks to provide an effective level of machine throughput
in three ways. First, in handling a stream of jobs, it assists the
operator in accomplishing setup operations for a given job while
previously scheduled jobs are being processed. Second, it permits
tasks from a number of different jobs to concurrently use the re
sources of the system in a multiprogramming mode, thus helping
to ensure that resources are kept busy. Also, recognizing that the
productivity of a shop is not solely a function of machine utiliza
tion, heavy emphasis is placed on the variety and appropriateness
in source languages, on debugging facilities, and on input
convenience.

Response time is the lapse of time from a request to comple
tion of the requested action. In a batch processing context, response
time (often called "turn-around time") is relatively long: the user
gives a deck to the computing center and later obtains printed re-

www.manaraa.com

157

suIts. In a mixed environment, however, we find a whole spectrum
of response times. Batch turn-around time is at the" red" end of the
spectrum, whereas real-time requirements fall at the "violet" end.
For example, some real-time applications need response times in
the order of milliseconds or lower. Intermediate in the spectrum
are the times for simple actions such as line entry from a keyboard
where a response time of the order of one or two seconds is de
sirable. Faced with a mixed environment in terms of applications
and response times, 08/360 is designed to lend itself to the whole
spectrum of response times by means of control-program options
and priority conventions.

For the sake of programmer productivity and convenience,
OS/360 aims to provide a novel degree of versatility through a
relatively large set of source languages. It also provides macro
instruction capabilities for its assembler language, as well as a
concise job-control language for assistance in job submission.

A second-generation operating system must be geared to change
and diversity. SYSTEM/360 itself can exist in an almost unlimited
variety of machine configurations: different installations will
typically have different configurations as well as different applica
tions. Moreover, the configuration at a given installation may
change frequently. If we look at application and configuration
as the environment of an operating system, we see that the operat
ing system must cope with an unprecedented number of environ
ments. All of this puts a premium on system modularity and
flexibility.

Adaptability is also served in 08/360 by the high degree to which
programs can be device-independent. By writing programs that
are relatively insensitive to the actual complement of input/output
devices, an installation can reduce or circumvent the problems
historically associated with device substitutions.

As constructed, OS/360 is "open-ended"; it can support new
hardware, applications, and programs as they come along. It can
readily handle diverse currency conventions and character sets.
It can be tailored to communicate with operators and programmers
in languages other than English. Whenever so dictated by chang
ing circumstances, the operating system itself can be expanded in
its functional capabilities.

Design concepts

In the notion of an "extended machine," a computing 'system is
viewed as being composed of a number of layers, like an onion.6 •s

Few programmers deal with the innermost layer, which is that
provided by the hardware itself. A FORTRAN programmer, for
instance, deals with an outer layer defined by the FORTRAN lan
guage. To a large extent, he acts as though he were dealing with
hardware that accepted and executed FORTRAN fltatements directly.
The SYSTEM/360 instruction set represents two inner layers, one
when operating in the supervisor state, another when operating in
the problem state.

productivity

adaptability

expandability

www.manaraa.com

158

The supervisor state is employed by OS/360 for the supervisor
portion of the control program. Because all other programs operate
in the problem state and must rely upon unprivileged instructions,
they use system macroinstructions for invoking the supervisor.
These macroinstructions gain the attention of the supervisor by
means of Bve, the supervisor-call instruction.

All 08/360 programs with the exception of the supervisor operate
in the problem state. In fact, one of the fundamental design tenets
is that these programs (compilers, sorts, or the like) are, to all in
tents and purposes, problem programs and must be treated as such
by the supervisor. Precisely the same set of facilities is offered to
system and problem programs. At any point in time, the system
consists of its given supervisor plus all programs that are available
in on-line storage. Inasmuch as an installation may introduce new
compilers, payroll programs, etc., the extended machine may grow.

In designing a method of control for a second-generation
system, two opposing viewpoints must be reconciled. In the first
generation operating systems, the point of view was that the
machine executed an incoming stream of programs; each program
and its associated input data corresponded to one application
or problem. In the first-generation real-time systems, on the other
hand, the point of view was that incoming pieces of data were
routed to one of a number of processing programs. These attitudes
led to quite different system structures; it was not recognized
that these points of view were matters of degree rather than
kind. The basic consideration, however, is one of emphasis;
programs are used to process data in both cases. Because it is
the combination of program and data that marks a unit of work
for control purposes, 08/360 takes such a combination as the
distinguishing property of a task. As an example, consider a trans
action processing program and two input transactions, A and B.
To process A and B, two tasks are introduced into the system,
one consisting of A plus the program, the second consisting of
B plus the program. Here, the two tasks use the same program
but difTerent sets of input data. As a further illustration, consider
a master file and two programs, X and Y, that yield different
reports from the master file. Again, two tasks are introduced
into the system, the first consisting of the master file plus x,
and the second of the master file plus Y. Here the same input
data join with two different programs to form two different tasks.

In laying down conceptual groundwork, the 08/360 designers
have employed the notion of multi task operation wherein, at
any time, a number of tasks may contend for and employ system
resources. The term multiprogramming is ordinarily used for
the case in which one CPU is shared by a number of tasks, the
term multiprocessing, for the case in which a separate task is
assigned to each of several cpu's. Multitask operation, as a concept,
gives recognition to both terms. If its work is structured entirely
in the form of tasks, a job may lend itself without change to either
environment.

www.manaraa.com

159

In 08/360, any named collection of data is termed a data set.
A data set may be an accounting file, a statistical array, a source
program, an object program, a set of job control statements, or
the like. The system provides for a cataloged library of data sets.
The library is very useful in program preparation as well as in
production activities; a programmer can store, modify, recompile,
link, and execute programs with minimal handling of card decks.

System elements

As seen by a user, OS/360 will consist of a set of language translators,
a set of service programs, and a. control program. Moreover, from
the viewpoint of system management, a SYSTEM/360 installation
may look upon its own application programs as an integral part of
the operating system.

A variety of translators are being provided for FORTRAN, translators

CODOL, and RPGL (a Report Program Generator Language). Also
to be provided is a translator for PL/I, a new generalized language.7

The programmer who chooses to employ the assembler language
can take advantage of macroinstructions; the assembler program
is supplemented by a. macro generator that produces a suitable set
of assembly language statements for each macroinstruction in the
source program.

Groups of individually translated prograIDS can be combined service
into a single executable progmm by a linkage editor. The linkage programs

editor makes it possible to change a program without re-translating
more than the affected segment of the program. Where a program
is too large for the available main-storage area, the function of
handling program segments and overlays falls to the linkage
editor.

The sort/merge is a generalized program that can arrange the
fixed- or variable-length records of a data set into ascending or
descending order. The process can employ either magnetic-tape or
direct-access storage devices for input, output, and intermediate
storage. The program is adaptable in the sense that it takes ad
vantage of all the input/output resources allocated to it by the
control program. The sort/merge can be used independently of
other programs or can be invoked by them directly; it can also
be used via COBOL and PL/I.

Included in the service programs are routines for editing,
arranging, and updating the contents of the library; revising the
index structure of the library catalog; printing an inventory list
of the catalog; and moving and editing data from one storage
medium to another.

Roughly speaking, the control program subdivides into master the control

scheduler, job scheduler, and supervisor. Central control lodges program

in the supervisor, which has responsibility for the storage alloca-
tion, task sequencing, and input/output monitoring functions.
The master scheduler handles all communications to and from the
operator, whereas the job scheduler is primarily concerned with

www.manaraa.com

supervisor

job

scheduler

master

scheduler

160

job-stream analysis, input/output device allocation and setup, and
job initiation and termination.

Among the activities performed by the supervisor are the
following:

• Allocating main storage
• Loading programs into main storage
• Controlling the concurrent execution of tasks
• Providing clocking services
• Attempting recoveries from exceptional conditions
• Logging errors
• Providing summary information on facility usage
• Issuing and monitoring input/output operations
The supervisor ordinarily gains control of the central processing
unit by way of an interruption. Such an interruption may stem
from an explicit request for services, or it may be implicit in
SYSTEM/3oo conventions, such as in the case of an interruption
that occurs at the completion of an input/output operation.
Normally, a number of data-access routines required by the data
management function are coordinated with the superyisor. The
access routines available at any given time are determined by the
requirements of the user's program, the structure of the given data
sets, and the types of input/output devices in use.

As the basic independent unit of work, a job consists of one or
more steps. Inasmuch as each job step results in the execution of a
major program, the system formalizes each job step as a task,
which may then be inserted into the task queue by the initiator
terminator (a functional element of the job scheduler). In some
cases, the output of one step is passed on as the input to another.
For example, three successive job steps might involye file mainte
nance, output sorting, and report tabulation.

The primary activities of the job scheduler are as follows:

• Reading job definitions from source inputs
• Allocating input/output deyices
• Initiating program execution for each job step
• Writing job outputs

In its most general form, the job scheduler allows more than one
job to be processed concurrently. On the basis of job priorities
and resource availabilities, the job scheduler can modify the order
in which jobs are processed. Jobs can be read from seyeral input
devices and results can be recorded on several output devices-the
reading and recording being performed concurrently with internal
processing.

The master scheduler serves as a communication control
link between the operator and the system. By command, the
operator can alert the system to a change in the status of an
input/output unit, alter the operation of the system, and request
status information. The master scheduler is also used by the
operator to alert the job scheduler of job sources and to initiate
the reading or processing of jobs.

www.manaraa.com

161

The control program as a whole performs three main functions:
job management, task management, and data management. Since
Part II of this paper discusses job and task management, and
Part III iff devoted entirely to data management, we do not further
pursue these functions here.

System modularity

Two distinguishable, but by no means independent, design prob
lems arise in creating a system such as OS/360. The first one is to
prescribe the range of functional capabilities to be provided;
essentially, this amounts to defining two operating systems, one
of maximum capability and the other a nucleus of minimum
capability. The second problem is to ascertain a set of building
blocks that will answer reasonably well to the two predefined
operating systems as well as to the diverse needs bounded by the
two. In resolving the second problem, which brings us to the
subject of modularity, no single consideration is more compelling
than the need for efficient utilization of main storage.

As stated earlier, the tangible OS/360 consists of a library of
program modules. These modules are the blocks from which actual
operating systems can be erected. The OS/360 design exploits
three basic principles in designing blocks that provide the desired
degree of modularity. Here, these well-known principles arc termed
parametric generality, functional redundancy, and functional
optionality.

The degree of generality required by varying numbers of
input/ output devices, control units, and channels can be handled
to a large extent by writing programs that lend themselves to
variations in parameters. This has long been practiced in sorting
and merging programs, for example, as well as in other generalized
routines. In OS/360, this principle also finds frequent application in
the process that generates a specific control program.

In the effort to optimize performance in the face of two or more
conflicting objectives, the most practical solution (at least at the
present state of the art) is often to write two or more programs
that exploit dissimilar programming techniques. This principle is
most relevant to the program translation function, which is es
pecially sensitive to conflicting performance measures. The same
installation may desire to effect one compilation with minimum
use of main storage (even at some expense of other objectives)
and another compilation with maximum efficacy in terms of
object-program running time (again at the expense of other ob
jectives). Where conflicting objectives could not be reconciled by
other means, the OS/360 designers have provided more than one
program for the same general translation or service function.
For the COBOL language, for example, there are two translation
programs.

For the nucleus of the control program that resides in main
storage, the demand for efficient storage utilization is especially

parametric

generality

functional

redundancy

www.manaraa.com

162

functional pressing. Hence, each functional capability that is likely to be
optionality unused in some installations is treated as a separable option.

When a control program is generated, each omitted option yields a
net saving in the main-storage requirement of the control program.

The most significant control program options are those re
quired to support various job scheduling and multi task modes
of operation. These modes carry with them needs for optional
functions of the following kinds:

• Task synchronization
• Job-input and job-output queues
• Distinctive methods of main-storage allocation
• Main-storage protection
• Priority-governed selection among jobs

In the absence of any options, the control program is capable
of ordinary stacked-job operation. The activities of the central
processing unit and the input/output channels are overlapped.
Many error checking and recovery functions are provided, inter
ruptions are handled automatically, and the standard data
management and service functions are included. Job steps are
processed sequentially through single task operations.

The span of operating modes permitted' by options in the
control program can be suggested by citing two limiting cases
of multitask operation. The first and least complicated permits
a scheduled job step to be processed concurrently with an initial
input task, say A, and a result-output task, say B. Because A
and D are governed by the control program, they do not correspond
to job steps in the usual sense. The major purpose of this configura
tion is to reduce delays between the processing of successive job
steps: tasks A and B are devoted entirely to input; output functions.

In the other limiting case, up to n jobs may be in execution
on a concurrent basis, the parameter n being fixed at the time
the control program is generated. Contending tasks may arise
from different jobs, and a given task can dynamically define
other tasks (see the description of the ATTACH macroinstruction
in Part II) and assign task priorities. Provision is made for
removal of an entire job step (from the job of lowest priority)
to auxiliary storage in the event that main storage is exhausted.
The affected job step is resumed as soon as the previously occupied
main-storage area becomes available again.

In selecting the options to be included in a control program,
the user is expected to avail himself of detailed descriptions and
accompanying estimates of storage requirements.

To obtain a desired operating system, the user documents his
system machine configuration, requests a complement of translators and
generation service programs, and indicates desired control-program options

all via a set of macroinstructions provided for the purpose. Once
this has been done, the fabrication of a specific operating system
from the OS/360 systems library reduces to a process of two stages.

www.manaraa.com

163

First, the macroinstructions are analyzed by a special program and
formulated into a job stream. In the second stage, the assembler
program, the linkage editor, and the catalog service programs
join in the creation of a resident control program and a desired
set of translators and service programs.

Summary comment

Intended to serve a wide variety of computer applications and to
support a broad range of hardware configurations, 05/360 is a
modular operating system. The system is not only open-ended
for the class of functions discussed in this paper, but is based
on a conceptual framework that is designed to lend itself to addi
tional functions whenever warranted by cumulative experience.

The ultimate purpose of an operating system is to increase
the productivity of an entire computer installation; personnel
productivity must be considered as well as machine productivity.
Although many avenues to increased productivity are reflected
in OS/360, each of these avenues typically involves a marginal
investment on the part of an installation. The investment may
take the form of additional personnel training, storage require
ments, or processing time. It repays few installations to seek added
productivity through every possible avenue; for most, the econ
omies of installation management dictate a well-chosen balance
between investment and return. Much of the modularity in OS/360

represents a design attempt to permit each installation to strike
its own economic balance.

CITED REFERENCES AND FOOTNOTES

1. For an introduction to SYSTEM/360, see G. A. Blaauw and F. P. Brooks,
Jr., "The structure of SYSTEM/360, Part I, outline of the logical structure,"
IBM Systems Journal 3, No.2, 119-135 (1964).

2. The restrictions exclude MODEL 44, as well as MODEL 20. The specialized
operating systems that support these excluded models are not discussed
here.

3. C. W. Adams and J. H. Laning, Jr., "The MIT systems of automatic
coding: Comprehensive, Su=er Session, Algebraic," Sympoltium on Auto
matic Coding Jor Digital Computers, Office of Naval Research, Department
of the Navy (May 1954).

4. In the case of the IBM 709 and 704 computers, the earliest developments were
largely due to the individual and group efforts of SHARE installations. The
first operating systems developed jointly by IBM and SHARE were the SHARE

Operating System (sos) and the FORTRAN Monitor System (FMS).

5. G. F. Leonard and J. R. Goodroe, "An environment for an operating sys
tem," Proceedings of the 19th National ACM Conference (August 1964).

6. A. W. Holt and W. J. Turanski, "Man to machine communication and
automatic code translation," Proceedings Western Joint Computer Con
ference (1960).

7. G. Radin and H. P. Rogoway, "NPL: highlights of a new prograIDIning
language," Communications oj the ACM 8, No.1, 9-17 (January 1965).

www.manaraa.com

164

Thi8 part of the paper di8cu88e8 the control-program function8 m08t
cl08ely related to job and task management.

Emphasized are design feature8 that facilitate diversity in application
environments a8 well a8 th08e that support multita8k operation.

The functional structure of OS/360
Part IT Job and task management

by B. I. Witt

One of the basic objectives in the development of OS/360 has been
to produce a general-purpose monitor that can jointly serve the
needs of real-time environments, multiprogramming for peripheral
operations, and traditional job-shop operations. In view of this
objective, the designers found it necessary to develop a more
generalized framework than that of previously reported systems.
Mter reviewing salient aspects of the design setting, we will
discuss those elements of 08/360 most important to an under
standing of job and task management.

Background

Although the conceptual roots of 08/360 task management are
numerous and tangled, the basic notion of a task owes much to
the systems that have pioneered the use of on-line terminals for
inventory problems. This being the -case, the relevant charac
teristics of an on-line inventory problem are worthy of review.
We may take the airline seat-reservation application as an ex
ample: a reservation request reduces the inventory of available
seats, whereas a cancellation adds to the inventory. Because a
reply to a ticket agent must be sent within a matter of seconds,
there is no opportunity to collect messages for later processing.
In the contrasting environment where files are updated and re
ports made on a daily or weekly basis, it suffices to collect and
sort transactions before posting them against a master file.

www.manaraa.com

165

Three significant consequences of the on-line environment can
be recognized:
• Each message must be processed as an independent task
• Because there is no opportunity to batch related requests,

each task expends a relatively large amount of time in refer
ences to the master file

• Many new messages may be received by the system before
the task of processing an older message is completed

What is called for, then, is a control program that can recognize
the existence of a number of concurrent tasks and ensure that
whenever one task cannot use the CPU, because of input/output
delays, another task be allowed to use it. Hence, the CPU is con
sidered a resource that is allocated to a task.

Another major consideration in on-line processing is the size
and complexity of the required programs. Indeed, the quantity
of code needed to process a transaction can conceivably exceed
main storage. Furthermore, subprogram selection and sequence
depend upon the content of an input message. Lastly, subpro
grams brought into main storage on behalf of one transaction
may be precisely those needed to process a subsequent trans
action. These considerations dictate that subprograms be callable
by name at execution t~e and relocatable at load time (so that
they may be placet! in any available storage area) j they also
urge that a single copy of a subprogram be usable by more than
one transaction.

The underlying theme is that a task-the work required to
process a message-should be an identifiable, controllable element.
To perform a task, a Yariety of system resources are required:
the CPU itself, subprograms, space in main and auxiliary storage,
data paths to auxiliary storage (e.g., a channel and a control unit),
interval timer and others.

Since a number of tasks may be competing for a resource,
an essential control program function is to manage the system's
resources, i.e., to recognize requests, resolve conflicting demands,
and allocate resources as appropriate. In this vein, the general
purpose multitask philosophy of the 05/360 control program
design has been strongly influenced by task-management ideas
that have already been tested in on-line systems. 1 But there
is no reason to limit the definition of "task" to the context of
real-time inventory transactions. The notion of a task may be
extended to any unit of work required of a computing system,
such as the execution of a compiler, a payroll program, or a data
conversion operation.

Basic definitions

In the interests of completeness, this section briefly redefines
terms introduced in Part 1. Familiarity with the general structure
of 5YSTEM/360 is assumed.2

From the standpoint of installation accounting and machine

www.manaraa.com

166

room operations, the basic unit of work is the job. The essential
characteristic of a job is its independence from other jobs. There is
no way for one job to abort another. There is also no way for
the programmer to declare that one job must be contingent upon
the output or the satisfactory completion of another job. Job
requirements are specified by control statements (usually punched
in cards), and may be grouped to form an input job stream.
For the sake of convenience, the job stream may include input
data, but the main purpose of the job stream is to define and
characterize jobs. Because jobs are independent, the way is open
for their concurrent execution.

By providing suitable control statements, the user can divide a
job job into job 8tep8. Thus, a job is the sum of all the work associated
step with its component job steps. In the current OS/360, the steps of a

given job are necessarily sequential: only one step of a job can be
processed at a time. Furthermore, a step may be conditional upon
the successful completion of one or more preceding steps; if the
specified condition is not met, the step in question can be bypassed.

Whenever the control program recognizes a job step (as the
task result of a job control statement), it formally designates the step

as a task. The task consists, in part or in whole, of the work to
be accomplished under the direction of the program named by
the job step. This program is free to invoke other programs in
two ways, first within the confines of the original task, and second
within the confines of additionally created tasks. A task is created
(except in the special case of initial program loading) as a con
sequence of an ATTACH macroinstruction. At the initiation of
a job step, ATTACH is issued by the control program; during
the course of a job step, ATTACH's may be issued by the user's
programs.

From the viewpoint of the control system, all tasks are inde
pendent in the sense that they may be performed concurrently.
But in tasks that stem from one given job (which implies that
they are from the same job step), dependency relationships may
be inherent because of program logic. To meet this possibility, the
system provides means by which tasks from the same job can be
synchronized and confined within a hierarchical relationship. As a
consequence, one task can await a designated point in the execu
tion of another task. Similarly, a task can wait for completion of a
subtask (a task lower in the hierarchy). Also, a task can abort a
subtask.

Although a job stream may designate many jobs, each of which
consists of many job steps and, in tum, leads to many tasks, a
number of quite reasonable degenerate cases may be imagined;
e.g., in an on-line inventory environment, the entire computing
facility may be dedicated to a single job that consists of a single job
step. At anyone time, this job step may be comprised of many
tasks, one for each terminal transaction. On the other hand, in
many installations, it is quite reasonable to expect almost all jobs
to consist of several steps (e.g., compile/link-edit/execute) with

www.manaraa.com

167

no step consisting of more than one task.
In most jobs, the executable programs and the data to be

processed are not new to the system-they are carried over from
earlier jobs. They therefore need not be resubmitted for the new
job; it is sufficient that they be identified in the control statements
submitted in their place as part of a job stream. A job stream con
sists of such control statements, and optionally of data that is
new to the system (e.g., unprocessed keypunched information).
Control statements are of six types; the three kinds of interest
here are job, execute, and data definition statements.

The first statement of each job is a. job statement. Such a
statement can provide a job name, an account number, and a pro
grammer's name. It can place the job in one of fifteen priority
classes; it can specify various conditions which, if not met at the
completion of each job step, inform the system to bypass the
remaining steps.

The first statement of each job step is an execute statement.
This statement typically identifies a program to be executed, al
though it can be used to ca.1l a previously cataloged procedure into
the job stream. The first statement can designate accounting
modes, conditional tests that the step must meet with respect to
prior steps, permissable execution times, and miscellaneous operat
ing modes.

A data definition statement permits the user to identify a data
set, to state needs for input/output devices, to specify the desired
channel relationships among data sets, to specify that an output
data set be passed to a subsequent job step, to specify the final
disposition of a data set, and to incorporate other operating details.

In OS/360, a ready-for-execution program consists of one or
more subprograms called load module8; the first load module to be
executed is the one that is named in the execute control statement.
At the option of the programmer, a program can take one of
the following four structures:

Simple structure. One load module, loaded into main storage as an
entity, contains the entire program.

Planned overlay structure. The program exists in the library as a
single load module, but the programmer has identified program
segments that need not be in main storage at the same given
time. As a consequence, one area of storage can be used and reused
by the different segments. The OS/360 treatment of this structure
follows the guide lines previously laid down by Reising and Larner.3
A planned overlay structure can make very effective use of main
storage. Because the control system intervenes only once to find a
load module, and linkages from segment to segment are aided by
symbol resolution in advance of execution, this structure also
serves the interest of execution efficiency.

Dynamic serial structure. The advantages of planned overlay tend
to diminish as job complexity increases, particularly if the selection

control
statements

program
structure

www.manaraa.com

168

Figure 1

A

SAVE SAvE .--_ SAVE

LINK A LINK B

RETURN
LINK B RETURN

RETURN

B

SAVE

RETURN

• SUPERVISORY ACTION

of segments is data dependent (as is the case in most on-line in
ventory problems). For this situation, OS/360 provides means for
calling load modules dynamically, i.e., when they are named during
the execution of other load modules. This capability is feasible be
cause main storage is allocated as requests arise, and the conven
tions permit any load module to be executed as a subroutine.
It is consistent with the philosophy that tasks are the central
element of control, and that all resources required by a task
for its successful performance-the CPU, storage, and programs
may be requested whenever the need is detected. In the dynamic
serial structure, more than one load module is called upon during
the course of program execution. Following standard linkage con
ventions, the control system acts as intermediary in establishing
subroutine entry and return. Three macroinstructions are provided
whereby one load module can invoke another: LINK, XCTL (trans
fer control), and LOAD.

The action of LINK is illustrated in Figure 1. Of the three
programs (i.e., load modules) involved, X is the only one named at
task-creation time. One of the instructions generated by LINK is a
supervisor call (SVC), and the program name (such as A or B in
the figure) is a linkage parameter. When the appropriate program
of the control system is called, it finds, allocates space for, fetches,
and branches to the desired load module. Upon return from the
module (effected by the macroinstruction RETURN), the occupied
space is liberated but not reused unless necessary. Thus, in the
example, if program B is still intact in main storage at the second
call, it will not be fetched again (assuming that the user is op
erating under "reusable" programming conventions, as discussed
below).

As suggested by Figure 2, XCTL can be used to pass control to
successive phases of a program. Standard linkage conventions are
observed, parameters are passed explicitly, and the supervisor

www.manaraa.com

Figure 2

SAVE

LINK A

RETURN

• SUPERVISORY ACTION

Figure 30, 3b

x

SAVE

LOAD B
LINK B

LINK B

LINK B
DELETE B

RETURN

30

A

SAVE

XCTL B

169

x

SAVE

LOAD B
BRANCH B

BRANCH B

BRANCH B
DELETE B

RETURN

3b

SAVE

RETURN

functions are similar to those needed forLINK. However, a program
transferring via XCTL is assumed to have completed its work, and
all its allocated areas are immediately liberated for reuse.

The LOAD macroinstruction is designed primarily for those
cases in which tasks make frequent use of a load module, and
reusable conventions are followed. LOAD tells the supervisor to
bring in a load module and to preserve the module until liberated
by a DELETE macroinstruction (or automatically upon task
termination). Control can be passed to the module by a LI!'."K, as
in Figure 3a, or by branch instructions, as in Figure 3b.

Dynamic parallel structure. In the three foregoing structures,
execution is serial. The ATTACH macroinstruction, on the other
hand, creates a task that can proceed in parallel with other tasks, as
permitted by availability of resources. In other respects, ATTACH
is much like LINK. But since ATTACH leads to the creation of
a new task, it requires more supervisor time than LI~TK and
should not be used unless a significant degree of overlapped
operation is assured.

Load modules in the library are of three kinds (as specified by
the programmer at link-edit time): not reusable, serially reusable,
and reenterable. Programs in the first category are fetched directly

program
usability

www.manaraa.com

170

from the library whenever needed. This is required because such
programs may alter themselves during execution in a way that
prevents the version in main storage from being executed more
than once.

A serially reusable load module, on the other hand, is designed
to be self-initializing; any portion modified in the course of execu
tion is restored before it is reused. The same copy of the load
module may be used repeatedly during performance of a task.
Moreover, the copy may be shared by different tasks created from
the same job step; if the copy is in use by one task at the time it is
requested by another task, the latter task is placed in a queue to
wait for the load module to become available.

A reenterable program, by design, does not modify itself during
execution. Because reenterable load modules are normally loaded in
storage areas protected by the storage key used for the supervisor,
they are protected against accidental modification from other
programs. A reenterable load module can be loaded once and used
freely by any task in the system at any time. (A reenterable load
module fetched from a private library, rather than from the main
library, is made available only to tasks originating from the same
job step.) Indeed, it can be used concurrently by two or more tasks
in multitask operations. One task may use it, and before the
module execution is completed, an interruption may give control
to a second task which, in turn, may reenter the module. This in no
way interferes with the first task resuming its execution of the
module at a later time.

In a multi task environment, concurrent use of a load module
by two or more tasks is considered normal operation. Such use is
important in minimizing main storage requirements and program
reloading time. Many 05/360 control routines are written III

reenterable form.
A reenterable program uses machine registers as much as

possible; moreover, it can use temporary storage areas that "be_
long" to the task and are protected with the aid of the task's stor
age key. Temporary areas of this sort Can be assigned to the
reenterable program by the calling program, which uses a linkage
parameter as a pointer to the area. They can also be obtained
dynamically with the aid of the GETMAIN macroinstruction in
the reenterable program itself. GETMAIN requests the supervisor
to allocate additional main storage to the task and to point out
the location of the area to the requesting program. Note that the
storage obtained is assigned to the task, and not to the program
that requested the space. II another task requiring the same pro
gram should be given control of the CPU before the first task finishes
its use of the program, a different block of working storage is
obtained and allocated to the second task.

Whenever a reenterable program (or for that matter any pro
gram) is interrupted, register contents and program status word
are saved by the supervisor in an area associated with the inter
rupted task. The supervisor also keeps all storage belonging to the

www.manaraa.com

171

task intact-in particular, the working storage beiug used by the
reenterable program. Xo matter how many intervening tasks use
the program, the original task can be allowed to resume its use of
the program by merely restoring the saved registers and program
status word. The reenterable program is itself unaware of which
task is using it at any instant. It is only concerned with the con
tents of the machine registers and the working storage areas
pointed to by designated registers .

.Job management

The primary functions of job management are

• Allocation of input/output devices
• Analysis of the job stream
• Overall scheduling
• Direction of setup activities

In the interests of efficiency, job management is also empowered
to transcribe input data onto, and user output from, a direct
access device.

In discussing the functions of OS/360, a distinction must be made
between job management and task management. Job management
turns each job step over to task management as a formal task, and
then has no further control over the job step until completion or
abnormal termination. Job management primes the pump by de
fining work for task management; task management controls the
flow of work. The functions of task management (and to some
degree of data management) consist of the fetching of required
load modules; the dynamic allocation of CPU, storage space,
channels, and control units on behalf of competing tasks; the
services of the intel"\"al timer; and the synchronization of related
tasks.

Job management functions are accomplished by a job scheduler
and a master scheduler. The job scheduler consists mainly of con
trol programs with three types of functions: read/interpret,
initiate/terminate, and write. The master scheduler is limited in
function to the handling of operator commands and messages to
the console operator.

In its most general form, the job scheduler permits priority
scheduling as well as sequential scheduling. The sequential schedul
ing system is suggested by Figure 4. A reader/interpreter scans
the control statements for one job step at a time. The initiator
allocates input/output devices, notifies the operator of the physical
volumes (tape reels, removable disks, or the like) to be mounted,
and then turns the job step over to task management.

In a priority scheduling system, as suggested by Figure 5, jobs
are not necessarily executed as encountered in an input job stream.
Instead; control information associated with each job enters an
input work queue, which is held on a direct-access deyice. Use of
this queue, which can be fed by more than one input job stream,
permits the system to react to job priorities and delays caused by

schedulers

www.manaraa.com

multijob
initiation

Fillur. 4

JOB STREAM

CARD
READER

AND/OR

AND/OR

DISK

AND/OR

172

the mounting and demounting of input! output volumes. The
initiator/terminator can look ahead to future job steps (in a given
job) and issue volume-mounting instructions to the operator in
advance.

Some versions of the system have the capability of processing
jobs in which control information is submitted from remote on-line
terminals. A reader/interpreter task is attached to handle the job
control statements, and control information is placed in the input
work queue and handled as in the case of locally submitted jobs.
Output data sets from remote jobs are routed to the originating
terminal.

For each step of a selected job, the initiator ensures that all
necessary input/output deyices are allocated, that direct-access
storage space is allocated as required, and that the operator has
mounted any necessary tape and direct-access yolumes. Finally,
the initiator requests that the supervisor lend control to the pro
gram named in the job step. At job step completion, the terminator
removes the work description from control program tables, freeing
input/output devices, and disposing of data sets.

One version of the initiator/terminator, optional for larger
systems where it is practical to have more than one job from the
input work queue under way, permits multijob initiation. When
the system is generated, the maximum number of jobs that are
allowed to be executed concurrently can be specified. Although
each selected job is run one step at a time, jobs are selected from
the queue and initiated as long as (1) the number of jobs specified

www.manaraa.com

173

by the user is not exceeded; (2) enough input/output devices are
available; (3) enough main storage is available; (4) jobs are in the
input work queue ready for execution; and (5) the initiator has not
been detached by the operator.

Multijob initiation may be used to advantage where a series of
local jobs is to run simultaneously with an independent job re
quiring input from remote terminals. Typically, telecommunica
tion jobs have periods of inactivity, due either to periods of low
traffic or to delays for direct-access seeks. During such delays, the
locally available jobs may be executed.

During execution, output data sets may be stored on a direct
access storage device. Later, an output writer can transcribe the
data to a system output device (normally a printer or punch). Each
system output device is controlled by an output writer task. More
over, output devices can be grouped into usage classes. For
example, a single printer might be designated as a class for high
priority, low-volume printed output, and two other printers as a
class for high-volume printing. The data description statement
allows output data sets to be directed to a class of devices; it also
allows a specification that places a reference to the data on the
output work queue. Because the queue is maintained in priority
sequence, the output writers can select data sets on a priority
basis.

In systems with input and output work queues, the output
writer is the final link in a chain of control routines designed to
ensure low turn-around time, i.e., time from entry of the work

Figure 5

JOB STREAM

CARD
READER

AND. OR

AND 'OR

DISK

AND,'OR

INPUT
QUEUE

OUTI'UT
QUEUE

S~l O~

www.manaraa.com

174

statement to a usable output. At two intermediate stages of the
work flow, data are accessible as soon as prepared, without any
requirement for batching; and at each of these stages, priorities
are used to place important work ahead of less important work
that may have been previously prepared. These stages occur
when the job has just entered the input work queue, and when the
job is completed with its output noted in the output work queue.

Note that a typical priority scheduling system, even one
that handles only a single job at a time, may require multitask
facilities to manage the concurrent execution of a reader, master
scheduler, and a single user's job.

Task management

As stated earlier, job management turns job steps over to task
management, which is implemented in a number of supervisory
routines. All work submitted for processing must be formalized as
a task. (Thus, a program is treated as data until named as an
element of a task.) A task may be performed in either a single-task
or multitask environment. In the single task environment, only
one task can exist at any given time. In the multi task environ
ment, several tasks may compete for available resources on a
priority basis. A program that is written for the single-task
environment and follows normal conventions will work equally
well in the multi task environment.

In a single-task environment, the job scheduler operates as a
single-task task that entered the system when the system was initialized. Each
operation job step is executed as part of this task, which, as the only task in

the system, can have all available resources. Programs can have a
simple, overlay, or dynamic serial structure.

The control program first finds the load module named in the
EXEC statement. Then it allocates main storage space according
to program attributes stated in the library directory entry for the
load module, and loads the program into main storage. Once the
load module (or root segment, in the case of overlay) is available in
main storage, control is passed to the entry point. If the load
module fetched is the first subprogram of a dynamic serial program,
the subsequent load modules required are fetched in the same
way as the first, with one exception: if the needed module is
reusable and a copy is already in main storage, that copy is used
for the new requirement.

When the job step is completed, the supervisor informs the
job scheduler, noting whether completion was normal or abnormal.

By clearly distinguishing among tasks, the control system can
allow tasks to share facilities where advantageous to do so.

Although the resource allocation function is not absent in a
multitask single-task system, it comes to the fore in a multitask system. The
operation system must assign resources to tasks, keep track of all assign

ments, and ensure that resources are appropriately freed upon
task completion. If several tasks are waiting for the same resource,
queuing of requests is required.

www.manaraa.com

175

Each kind of resource is managed by a separate part of the
control system. The CPU manager, called the task dispatcher, is
part of the supervisor; the queue on the CPU is called the task queue.
The task queue consists of task control blocks ordered by priority.
There is one task control block for each task in the system. Its
function is to contain or point to all control information associated
with a task, such as register and program-status-word contents
following an interrupt, locations of storage areas allocated to the
task, and the like. A task is ready if it can use the cpu, and waiting
if some event must occur before the task again needs the CPU.

A task can enter the waiting state directly via the W .UT macro
instruction, or it may lapse into a waiting state as a result of
other macroinstructions. An indirect wait may occur, for example,
as a result of a GET macroinstruction, which requests the next
input record. If the record is already in a main storage buffer
area, the control program is not invoked and no waiting occurs;
otherwise, a WAIT is issued by the GET routine and the task
delayed until the record becomes available.

Whenever the task dispatcher gains control, it issues the Load
Program Status Word instruction that passes control to the ready
task of highest priority. If none of the tasks are ready, the task
dispatcher then instructs the CPU to enter the hardware waiting
condition.

By convention, the completed use of a resource is always
signaled by an interruption, whereupon the appropriate resource
manager seizes control.

Let subtask denote a task attached by an existing task within
a job step. Subtasks can share some of the resources allocated
to the attaching task-notably the storage protection key, main
storage areas, serially reusable programs (if not already in use),
reenterable programs, and data sets (as well as the devices on
which they reside). Data sets for a job step are initially pre
sented to the job scheduler by data definition statements. When
the job scheduler creates a task for the job step, these data sets
become available to all load modules operating under the task,
with no restriction other than that data-set boundaries be heeded.
When the task attaches a subtask, it may pass on the location
of any data control block: using this, the subtask gains access
to the data set.

We have mentioned the ways by which an actiYe task can enter
a waiting state in anticipation of some specific eyent. After the
event has occurred, the required notification is effected with the
aid of the POST macroinstruction. If the event is governed by the
control program, as in the instance of a read operation, the super
visor issues the POST; for events unknown to the supervisor, a
user's program (obyiously not part of the waiting task) must issue
a POST.

A task program may issue several requests and then await the
completion of a ginn number of them. For example, a task may
specify by READ, WRITE, and ATTACH macroinstructions that

synchronized

events

www.manaraa.com

176

three asynchronous activities be performed, but that as soon as
two have been completed, the task be placed in the ready condi
tion. When each of these requests is initially made to the control
program, the location of a one-word event control block is stated.
The event control block provides communication between the task
(which issued the original request and the subsequent WAIT)
and the posting agency-in this case, the control program. When
the WAIT macroinstruction is issued, its parameters supply the
addresses of the relevant event control blocks. Also supplied is a
wait count that specifies how many of the events must occur before
the task is ready to continue.

When an event occurs, a complete flag in the appropriate
event control block is set by the POST macroinstruction, and the
number of complete flags is tested against the wait count. If they
match, the task is placed in the ready condition. A post code
specified in the POST macroinstruction is also placed in the event
control block; this code gives information regarding the manner
in which completion occurred. After the task again gains control,
the user program can determine which events occurred and ill
what manner.

Requests for services may result in waits of no direct concern
to the programmer, as, for example, in the case of the GET macro
instruction previously mentioned. In all such instances, event
control blocks and wait specifications are handled entirely by the
supervisor.

Another form of synchronization allows cooperating tasks to
share certain resources in a "serially reusable" way. The idea
(already invoked in the discussion of programs) may be applied
to any shared facility. For example, the facility may be a table
that has to be updated by many tasks. In order to produce the
desired result, each task must complete its use of the table before
another task gains access to it (just as each task had to complete
its use of a self-initiating program before another task was allowed
to use the program). To control access to such a facility, the pro
grammer may create a queue of all tasks requiring access, and
limit access to one task at a time. Queuing capabilities are pro
vided by two macroinstructions: enqueue (EXQ) and dequeue
(DEQ). The nature of the facility, known only to the tasks that
require it, is of no concern to the operating system so long as a
queue control block associated with the facility is provided by the
programmer. ENQ causes a request to be placed in a queue asso
ciated with the queue control block. If the busy indicator in
the control block is on, the task issuing the ENQ is placed in the
wait condition pending its turn at the facility. If the busy indi
cator is off, the issuing task becomes first in the queue, the busy
indicator is turned on, and control is returned to the task. When
finished with the facility, a task liberates the facility and posts the
next task on the queue by issuing DEQ.

In a multitask operation, competing requests for service or
resources must be resolved. In some cases, choices are made by

www.manaraa.com

177

considering hardware optimization, as, for e ample, servIcmg task

requests for access to a disk in a fashion that minimizes disk seek- priority
ing time. In most cases, however, the system relies upon a priority
number provided by the user. The reason for this is that the user
can best select priority criteria. He may reconcile such factors
as the identification of the job requestor, response-time require-
ments, the amowlt of time already allocated to a task, or the
length of time that a job has been in the system without being
processed. The net result is stated in a priority number ranging
from 0 to 14 in order of increasing importance.

Initial priorities, specified in job statements, affect the sequence
in which jobs are selected for execution. The operator is free to
modify such priorities up to the time that the job is actually
selected. Changes to priorities may be made dynamically by the
change priority (CHAP) macroinstruction, which allows a program
to modify the priority of either the active task or of any of its
subtasks. Means are provided whereby unauthorized modifica
tion can be prevented.

'When the job scheduler initiates a job step, the current priority
of the job is used to establish a dispatch priority and a limit pri
ority. The former is used by the resource managers, where applica
ble, to resolve contention for a resource. The limit priority, on the
other hand, sen'es to control dynamic priority assignments. CHAP
permits each task to change its dispatching priority to any point
in the range between zero and its limit. Furthermore, when a task
attaches a subtask, it is free to set the subtask's dispatching and
limit priorities at any point in the range between zero and the
limit of the attacher; the subtask's dispatching priority can how
ever exceed that of the attacher. For example, were task A, with
limit and dispatching priorities both equal to 10, to attach sub
task B with a higher relative dispatching priority than itself,
it could use CHAP to lower its own dispatching priority to 7 and
attach B with limit and dispatching priorities set to 8.

It is expected that most installations will ordinarily use three
levels of priority for batch-processing jobs. Xormal work will
automatically be assigned a median priority. A higher number will
be used for urgent jobs, and a lower one for low-priority work.

Normally, programs are expected to signal completion of their task

execution by RETL"RX or XCTL. If the program at the highest termination

control level within the task executes a ltETURX, the supervisor
treats it as an end-of-task signal. Whenever RETI-:RN is used,
one of the general registers is used to transmit a return code to
the caller. The return code at task termination may be inspected
by the attaching task, and is used by the job scheduler to evaluate
the condition parameters in job control statements. It may, for
example, find that all remaining steps are to be skipped.

In addition, any program operating on behalf of a task can
execute a macroinstruction to discontinue task execution ab
normally. The control program then takes appropriate action to
liberate resources, dispose of data sets, and remoye the task con-

www.manaraa.com

main

storage

allocation

storage

protection

178

trol block. Although abnormal termination of a task causes ab
normal tennination of all subtasks, it is possible for abnormal sub
tasks to terminate without causing termination of the attaching
task.

The supervisor is designed to allocate main storage dynam
ically, when space is demanded by a task or the control program it
seH. An implicit request is generated internally within the control
program, on behalf of some other control program service. An
example is LINK, in which the supervisor finds a program, allocates
space, and fetches it. To make explicit requests for additional
main storage areas, a user program may employ the GETMAIN
or GETPOOL macroinstructions.

Also provided are means for dynamic release of main storage
areas. Implicit release may take place when a program is no longer
in use, as signaled by RETURN, XCTL, or DELETE. Explicit
release is requested by the FREEMAIN or FREEPOOL macro
instructions.

Explicit allocation by GETMAIN can be for fixed or variable
areas, and can be conditional or unconditional:

• Fixed area. The amount of storage requested is explicitly given.
• Variable area. A minimum acceptable amount of storage is

specified, as well as a larger amount preferred. If the larger
amount is not available, the supervisor responds to the request
with the largest available block that equals or exceeds the
stated minimum.

• Conditional. Space is requested if available, but the program
can proceed without it.

• Unconditional. The task cannot proceed without the requested
space.

The operating system uses the SYSTEM/360 storage protection
feature to protect storage areas controlled by the supervisor
from damage by user jobs and to protect user jobs from each other.
This is done by assigning different protection keys to each of
the job steps selected for concurrent execution. However, if
multiple tasks result from a single job step (by use of the ATTACH
macroinstruction), all such tasks are given the same protection
key to allow them to write in common communication areas.

Each job step is assigned two logically different pools, each
consisting of one or more storage blocks. The first of these is used
to store non-reusable and serially-reusable programs from any
source, and reenterable programs from sources other than the main
library. This pool is not designated by number. The second~pool,
numbered 00, is used for any task work areas obtained by the
supervisor and for filling all GETMAIN or GETPOOL requests-un
less a non-zero pool number is specified.

When the highest-Ieyel task of a job step is terminated, all
storage pools are released for reassignment. However, when a
task attaches a subtask, and makes storage areas available to the

www.manaraa.com

179

subtask, it may suit the purposes of the task not to have the
storage areas released upon completion of the subtask. To provide
for this possibility, programs may call for the creation of pools
numbered 01 or higher. Such a pool may be made available to a
sub task in either of two ways-that is, by passing or sharing. If a
pool created by a task is passed to a subtask, termination of the
subtask results in release of the pool. On the other hand, subtask
termination does not result in the release of a shared pool. In
both cases, the subtask that receives a pool may add to the pool,
delete from it, or release it in the same way as the originating task.

Because Pool 00 refers to the same set of storage blocks for all
tasks in a job step, it need not be passed or shared, and is not
released until the job step is completed.

If two or more job steps are being executed, and one requires
more additional main storage than is available for allocation, the
control program intervenes. First, the supervisor attempts to free
space occupied by a program that is neither in use nor reserved
by a task. Failing that, it may suspend the execution of one or
more tasks by storing the associated information in auxiliary
storage. The storage and retrieval operations occasioned by com
peting demands for main-storage space are termed roll-out and
roll-in.

The decision to roll out one or more tasks is made on the basis
of task priorities. A main storage demand by a task can cause as
many lower-priority tasks to be rolled out as necessary to satisfy
the demand. If the lowest-priority task in the system needs more
space to continue, it is placed in a wait state pending main storage
availability.

During roll-out, all tasks operating under a single job step are
removed as a group. Input/output operations under way at the
time of the roll-out are allowed to reach completion.

Roll-in takes place automatically as soon as the original space
is again ayailable, and execution continues where it left off. Since
its task control block remains in a wait status and its input/output
units are not altered, a task may still be considered in the system
after roll-out.

Significance of multitask operations

It may be expected that multitask operations will not only provide
powerful capabilities for many existing environments, but will
also serye as a foundation for more complex environments for
some time to come.

Fast turnaround in job-shop operations is achieved by allowing
concurrent operation of input readers, output writers, and user's
programs. It is possible to handle a wide variety of telecommunica
tion activities, each of which is characterized by many tasks
(most of them in wait conditions). Also, complex problems can
be programmed in segments that concurrently share system
resources and hence optimize the use of those resources. With
some versions of the job scheduler, multi task operations permit

passing

and

sharinl

roll-out
and

roll-in

www.manaraa.com

180

job steps from several different jobs to be established as con
current tasks. To serve such current multitask needs, the structure
of the control system consists of two primary classes of elements:
(1) queues representing unsatisfied requirements of tasks for cer
tain resources, and (2) tables identifying available resources. Some
of the control information is in main storage; some is in auxiliary
storage. This structure facilitates dynamic configuration changes,
such as addition or removal of programs in main storage, and
attached input/output devices.

Perhaps more important for future systems, the structure
may prove adaptable in the management of additional CPu's.
For example, if multiple CP"L'S were given access to the job queue
(now stored on a disk), each CPU could queue new jobs as well
as initiate jobs already on the queue. Similarly, if multiple cpu's
were given access to main storage, each CPU could add tasks to
the task queue and dispatch tasks already on the task queue.
That is, a system could be designed wherein, by executing the
task-dispatcher control routine (which itself is in the shared main
storage), any CPU could be assigned a ranking task on the queue;
and while executing a task, any CPU could add new tasks to the
queue by means of the ATTACH macroinstruction.

Summary

In OS/360, for which the basic unit of work is the task, resources
are allocated only to tasks. In general, resources are allocated
dynamically to permit easier planning on the part of the pro
grammer, achieve more efficient utilization of storage space, and
open the way for concurrent execution of a number of tasks.

Users notify the system of work requirements by defining each
job as a sequence of job-control statements. The number of tasks
entailed by a job depends upon the nature of the job. The system
permits job definitions to be cataloged, thereby simplifying the
job resubmittal process. Reading of job specifications and source
data, printing of job results, and job execution can occur simul
taneously for different jobs. Job inputs and outputs may be queued
in direct-access storage, thereby avoiding the need for external
batching and permitting priority-governed job execution. In its
multijob-initiation mode, the system can process a number of
jobs concurrently.

CITED REFERENCES AND FOOTXOTE

1. An historic review of operating systems, with emphasis on I/O control and
job scheduling, appears in Reference 4. Operating systems that provided
for multiprogramming are described in References 5, 6, and 7. One on-line
inventory application is described in Reference 8, and some indication of
techniques used in its solution are given in References 9 and 10.

2. G. A. D1aauw and F. P. Brooks, Jr., "The structure of SYSTEMj360: Part
I-outline of the logical structure," IBM Systems Journal 3, No.2, 119-
135 (1964).

3. W. P. Heising and R. A. Larner, "A semi-automatic storage allocation

www.manaraa.com

181

system at loading time," C011lmunicaticms oj the AC.lJ 4, No. 10, 446-449
(October 1961).

4. T. B. Steel, Jr., "Operating systems," Datamation 10, No.5, 26-28 (May
1964).

5. E. S. McDonough, "STRETCH experiment in multiprogramming," Digest
0/ Technical Papers, ACM 62 National Conference, 28 (1962).

6. E. F. Codd, "Multi-programming," AdllanceB in Computers, Volume 3,
Edited by Franz L. Alt and Morris Rubinoff.

7. G. F. Leonard, "Control techniques in the CL-II Programming System,"
Digest 0/ Technical Papers, ACM 62 National Conference, 29 (1962).

8. M. N. Perry and W. R. Plugge, "American Airlines SABRE electronic
reservation system," WJCC Procudings, 593-601 (May 1961).

9. M. N. Perry, "Handling of very large programs," Proceedings o/IFIP
Congress 65, Volume 1, 243-247 (1965).

10. W. B. Elmore and G. J. Evans, Jr., "Dynamic control of core memory
in a real-time system," Procudings o/IFIP Congress 65, Volume 1, 261-
266 (1965).

www.manaraa.com

182

Concepts underlying the data-management capabilities of OS/360 are
introduced; distinctive features of the access methods, catalog, and
relevant system macroinstructions are discussed.

To ~1lU8trate the way in which the control program adapts to actual
input/output requirements, a read operation is examined in con
siderable detail.

The functional structure of OS/360
Part m Data management

by W. A. Clark

The typical computer installation is confronted today with an
imposing mass of data and programs. Moreover, with the ap
plicable technologies developing at a rapid pace, the current trend
is toward increasing diversity and change in input; output and
auxiliary storage devices. Together, these factors dictate that the
so-called "input/output" process be viewed in new perspective.
Whereas the support provided by a conventional input/output
control system is usually limited to data transfer and label proces
sing, the current need is for a data management system that en
compasses identification, storage, survey, and retrieval needs
for programs as well as data. Not only should the system employ
the capabilities of both direct-access and serial-access devices,
but ideally should be able to satisfy a storage or input/output
requirement with any storage device that meets the functional
specifications of the giyen requirement.

Our purpose here is to discuss the main structural aspects of
OS/360 from the standpoint of data management. In identifying,
storing, and retrieving programs and data via OS/360, a programmer
normally reckons with device classes rather than specific devices.
Because actual deyices are not assigned until job-step execution
time, a novel degree of device independence is achieved. Moreover,
as befits a system intended for a wide range of applications, OS/360

www.manaraa.com

183

provides for several data organizations and search schemes., Vari-
0us buffering and transmittal options are provided.

Background
Although the data management services provided by 05/360 are
deliberately similar to those provided by predecessor systems, the
system breaks with the past in the manner in which it adapts
to specific needs.

For mobilizing the input/ output routines needed in a given
job step, one well-known scheme places these routines into the
user's program during the compilation process. K 0 post-assembly
program fetching or editing is then required; a complete, execut
able program results. This scheme has significant disadvantages.
It requires that a fairly complete description of device types and
intended modes of operation be stated in the source program.
Compilation is made more difficult by having to concern itself
with details of the input/output function, and compiled programs
can be made obsolete by environmental changes that affect the
input/output function.

These disadvantages led the designers of some prior operating
systems, for example, IBSYS/IBJOB, to circumvent the inclusion of
input/output routines in assembled programs by providing a
set of input/output "packages" that could be mobilized at pro
gram-loading time.1 Designed to operate interpretively, these
optional packages permitted a source program to be less specific
about devices and operating modes; moreover, they permitted
change in the input/ output environment without program reas
sembly. On the other hand, interpretive execution tends to reduce
the efficiency of packages and limit the feasible degree of system
complexity and expandability.

Faced with unprecedented diversity in storage devices and
potential applications in addition to the complexities of muItitask
operation, the 05/360 designers have carried the IBSYS/IBJOB

philosophy further, but with a number of significant tactical
differences. Data-tnanagement control facilities are not obtained
at program-loading time; instead, they are tailored to current
needs during the very course of program execution (wherever the
programmer uses an OPEN macroinstruction). The data-access
routines are reenterable, and different tasks with similar needs
may share the same routines. Because routines do not act inter
pretively, they can be highly specialized as well as economical of
space. A program chooses one of the available access methods and
requests input/output operations using appropriate macroinstruc
tions. Device types, buffering techniques, channel affinities, and
data attributes are later specified via data-definition statements in
the job stream. In fact, the OS/360 job stream permits final speci
fication of nearly every data or processing attribute that does not
require re-resolution of main-etorage addresses in an assembled
program. These attributes include blocking factors, buffering
techniques, error checks, number of buffers, and the like.

compiled

I/O routines

interpretive

I/O routines

generated

I/O routines

www.manaraa.com

volume

184

System definitions

An operating system deals with many different categories of infor
mation. Examples from a number of categories are a source pro
gram, an assembJed program, a set of related subroutines, a mes
sage queue, a statistical table, and an accounting file. Each of
these examples consists of a collection of related data items. In the
08/360 context, such a collection is known as a data set. In the
operational sense, a data set is defined by a data-set label that
contains a name, boundaries in physical storage, and other param
eters descriptive of the data set. The data-set label is normally
stored with the data set itself.

A standard unit of auxiliary storage is called a volume. Each
direct-access volume (disk pack, data cell, drum, or disk area
served by one access mechanism) is identified by a volume label.
This label always contains a volume serial number; in the case of
direct-access devices, it also includes the location of a volume
table of contents (VTOC) that contains the labels of each data set
stored in the corresponding volume. A label to describe the VTOC

and an additional label to account for unused space are created.
Before being used in the system, each direct-access volume is
initialized by a utility program that generates the volume label
and, for direct-access deyices, constructs the table of contents.
This table is designed to hold labels for the data sets to be written
on the volume.

Given the volume serial number and data-set name, the control
program can obtain enough information from the label to access
the data set itself.

A job step can place a data set in direct-access storage via a
data definition (DD) statement that requests space, specifies the
kind of volume, and giyes the data-set name. At job-step initiation,
the system allocates space and creates a label for each area re
quested by a DD statement. Finally, during job-step execution, the
label is completed and updated via OPEN and CLOSE macro
instructions.

Each reel of magnetic tape is considered a yolume. In view of
the serial properties of tape, the method used for identifying
volumes and data sets departs somewhat from the method used
for direct-access devices. The standard procedure still employs
volume labels and data-set labels; but each datu-set label exists in
two parts: a header label preceding its data set, and a trailer label
that follows it. The location of a data set in a tape volume is repre
sented by a sequence number that facilitates tape searching.

Although the system includes a generalized labeling procedure,
it permits a user to employ his own tape-label conventions and
label-checking routines if so desired. Unlabeled tapes may be
used, in which case the responsibility for mounting the right
volumes reverts to the operator.

To free the programmer of the need to maintain inventories
of his data sets, the system provides a data-set catalog. Held in

www.manaraa.com

185

direct-access storage, this catalog consists of a tree-organized set of
indexes. To best serve the needs of individual installations, the or
ganization of the tree structure is left to the user. Each qualifier of
a data-set name corresponds to an additional level in the tree. For
example, the data set PAYROLL.MASTER.SEG!lIEXTl is found by
searching a master index for PAYROLL, a second-le\-el index for
MASTER, and a third-level index for SEGMEXTl. Stored with the
latter argument are entries that identify the volume containing
the data set and the device type; in the case of serial-access devices,
a sequence number is also stored.

A volume containing all or part of the catalog is called a control
volume. Kormally, the operating system resides in a control volume
known as the system 1'csidence volume. The use of a distinctive
control volume for a group of related data sets makes it convenient
to move the portion of the catalog that is relevant to the group.
This is particularly important in planning for the possibility that
groups of data sets may be moved from one computer to another.

A data-set search starts in a system residence volume and
continues, level by le\'el, until a volume identification number is
obtained. If the required volume is not already mounted, a message
is issued to the operator. Then, if the data set is stored in a direct
access device, the search for the data-set location resumes with
the volume label of the indicated volume, continues in the volume
table of contents, and proceeds from there to the data set's starting
location. On the other hand, if the data set is held on a serial
access device, the search continues using a sequence number as
an argument.

To simplify DD (data definition) statements for recurrent up
dating jobs, data sets related by name and cataloging sequence
can be identified as a generation group. In applications that
regularly use the 11 most prior generations of a group to produce
a new generation, the new generation may be named (and later
referred to) relatiw to the most recent generation. Thus, the
DD statement need not be changed from run to run. 'When the
index for the generation group is established, the programmer
specifies n. As each new generation is cataloged, the oldest genera
tion is deleted from the catalog. Provision is also made for the
special case in which n varies systematically, starting at 1 and
increasing by 1 until it reaches a user-specified number N, at
which time it starts over at 1.

To safeguard sensitive data, any data set may be flagged in its
label as "protected." This protection flag is tested as a consequence
of the OPEN instruction; if the flag is on, a correct passl.Cord must
be entered from the console. The data set name and appended
password serve as an argument for searching a control table. The
OPEN routine is not permitted to continue unless a matching entry
is found in the table.

Because the control table has its own security flag und masier
password, it can be reached only by the control progrnm und those
programmers prh-ileged to know the master password.

catalog

control

volume

generation

group

password

www.manaraa.com

record

and block

buffer

transmittal

modes

186

In discussing the internal structure and disposition of a data
set, it is necessary to distinguish between the record, an application
defined entity, and the blod:, which has hardware-defined bound
aries and is goyerned by operational considerations. Let b denote
block length (in bytes) and B a maximum block length. Although
08/360 requires that B be specified for each given data set, con
ventions permit three block-format categories: unspecified,
variable, and fixed. The first category requires that b :s; B for all
blocks. The second is similar to the first, except that each b is stored
in a count field at the beginning of its block. The third category
dictates that all blocks be of length B.

A fixed or variable block may contain multiple records. A fixed
block contains records of fixed size. In the variable block, records
may vary in size, and each record is preceded by a field that records
its size. For storage deyices that employ interblock gaps, it is well
known that record blocking can increase effective data rates, con
serve storage, and reduce the needed number of input/output
operations in processing a data set. For data sets of unspecified
block format, the system makes no distinction between block and
record; any applicable bloc-king and deblocking must be done by the
user's program. The unspecified format is intended for use with
peripheral equipment, suc-h as transmission deyices, address label
printers, and the like.

A buffer is a main storage area allocated to the input/output
function. The portion of a buffer that holds one record is called a
buffer segment. A group of buffers in an area of storage formatted
by the system is called a buffer pool; a data set associated with
a buffer pool is assigned buffers from the pool. r nless a programmer
assigns a buffer pool to a data set, 08/360 does so; unless buffer
size is specified by the programmer, 08/360 sets the size to B.

In processing records from magnetic tape, it is customary to
read and process records from one or more data sets, and to create
one or more new data sets. A number of buffering considerations
come into play. It may suffice to process a record within a buffer;
it may be preferable to moye the input record to a work area and
the updated record from the work area into an output buffer;
other possibilities may suggest themselves. Moreover, in processing
records from direct-access storage, the same data set may be
accessed for input and output.

To allow flexibility in buffer usage, the 05/360 record-transfer
routines invoked by the GET and PUT macroinstructions permit
three transmittal modes. In the "move" mode, each record is moved
from an input. buffer to a work area and finally to an output buffer.
In the "locate" mode, a record is never actually moved, but a
pointer to the record's buffer segment is made aYailable to the
application program. In the "substitute" mode, which also uses
pointers, the 'lpplication program provides a work area equal in
size to a record, and the buffer segment and work area effectively
change roles.

To supplement the transmittal modes in special cases, three

www.manaraa.com

187

methods of buffer allocation are defined. Simple buffering, the
most general method, allocates one or more buffers to each data set.
Exchange buffert'ng, used with fixed-length records, utilizes data
chaining facilities to effect record gather and record scatter opera
tions. Buffer segments from an input data set are exchanged with
buffer segments of an output data set or work area. K ot only can
each buffer segment be treated, in turn, as an input area, work
area, and output area, but chaining allows noncontiguous segments
to simulate a block. Exchange buffering is partiCUlarly useful in
updating sequential files, merging, and array manipulation.

Chained-segment buffering is designed for messages of variable
size. Segments are established dynamically, with chaining being
used to relate physically separate segments. This method is
designed to circumyent the need for a static allocation of space to a
remote terminal: of the many terminals that can be present in a
system, only a fraction are ordinarily in use at a given time.

Access principles

To fall within the OS/360 data-management framework, a data
set must belong to one of five organizational categories. As will
be seen, the classification is based mainly on search considerations.

buffer

allocation

Data sets consisting of records held in serial-access storage data-set

media (such as magnetic tapes, paper tapes, card decks, or printed categories

listings) are said to possess sequential organization. If so desired, a
data set held in a direct-access device may also be organized
sequentially.

Three of the fiye categories apply solely to direct-access
devices. The indexed sequential organization stores records in
sequence on a key (record-contained identifier). Because the
system maintains an index table that contains the locations of
selected records in the sequence, records can be accessed randomly
as well as sequentially. A direct organization is similar, but dis
penses with the index table and leaves record addressing entirely
up to the programmer. A partitioned organization dh-ides a se
quentially organized data set into members; member names and
locations are held in a directory for the data set. A member con
sists simply of one or more blocks. Included primarily for data
sets consisting of programs or subroutines, this organization is
suitable for any data set of randomly retrieved sequences of
blocks.

A telecommunications organization is provided for queues of
messages received from or enroute to remote on-line terminals.
Provision is made for forming message queues and for retrieving
messages from queues. Queues may be held in direct-access stor
age as well as in main storage.

A broad distinction is made between two classes of data- language

management languages. Designed for programming simplicity, categories

the queued access languages apply only to organizations with
sequential properties. The programmer typically uses the macro-

www.manaraa.com

access
methods

Table 1

188

Organization

Sequential
Indexed Sequential
Direct
Partitioned
Telecommunication

Language category
QUIlued Basic

QSAM

QISAM

QTAM

BSAM

BISAM

BDAM

BPAM

BTAM

instructions GET and PUT to retrieve and store records, and buf
fers are managed automatically by the system. On the other hand,
the basic acce8S languages provide for automatic device control,
but not for automatic buffering and blocking. Typically, the READ
and WRITE macroinstructions are used to retrieve and store
blocks of data. Because the programmer retains control over
device-dependent operations (such as card reader or punch-stacker
selection, tape backspacing, and the like), he may use any de
sired searching, buffering, or blocking methods.

Of the ten possible combinations of data-set and language
categories, eight are recognized by the system as access methods.
These eight methods bear the mnemonic names given in Table 1:
QSAM denotes "queued sequential access method," and so on. For
each access method, a vocabulary of suitable macroinstructions is
provided.

To employ a given access method, a programmer resorts to
the vocabulary of macroinstructions provided for that method.
Vocabularies for six of the methods are summarized in Table 2.
Although six macroinstructions are common to all of these meth
ods, the parameters to be specified in a macroinstruction may
vary from method to method. If so desired for specialized applica
tions, a programmer can circumvent the system-supported access
methods and employ the execute channel program (EXOP) macro
instruction in fashioning his own access method. In this case, he
must prepare his own channel program (sequence of channel com
mand words).

A few words on each vocabulary element of Table 2 help
to clarify access principles. At assembly time, the DOB macro
instruction reserves space for a data control block and fills in control
block fields that designate the desired access method, name a
relevant DD statement, and select some of the possible options.
The application programmer is expected to provide symbolic
addresses of any applicable supplementary routines, as for ex
ample, special label-processing routines.

The programmer issues an OPEN macroinstruction for each
data control block. At execution time, OPEN supplies information
not declared in the DOB macroinstruction, selects access routines
and establishes linkages, issues volume mounting messages to the
operator, verifies labels, allocates buffer pools, and positions

www.manaraa.com

Table 2 Access-method vocabularies

Macro
instruction

DCB
OPEN
CLOSE
BUILD
GETPOOL
FREEPOOL

GET
PUT
PUTX

RELSE
TRUNC
FEOV
CNTRL
PRTOV
SETL
ESETL
CHECK

NOTE
POINT
FIND
BLDL
STOW
RELEX
FREEDBUF
GETBUF
FREEBUF
WAIT
READ
WRITE

Q Q B B B B
SISPID

A- S A- A- S A

M A- M M A- M
M M

189

Macroinstruction
function in brief

Generate a data control block
Open a data control block
Close a data control block
Structure named area as a buffer pool
Allocate space to and format buffer pool
Liberate buffer-pool space

Obtain a record from an input data set
Include a record in an output data set
Include an input record in an output
data set
Force end of input block
Force end of output block
Force end of volume
Control reader or printer operation
Test for printer carriage overflow
Set lower limit for scan
Postpone fetching during scan
Wait for I/O completion and verify
proper operation
Note where a block is read or written
Point to a designated block
Obtain the address of a named member
Build a special directory in main store
Update the directory
Release exclusive control of a block
Free dynamically obtained buffer
Assign a buffer from the pool
Return a buffer to the pool
Wait for I/O completion
Read a block
Write a block

volumes. The programmer may free a data control block and
return associated buffers to the pool by the CLOSE macroinstruc
tion; if he omits CLOSE, the system performs the corresponding
functions at task termination.

The programmer can request the system to allocate and format
a buffer pool at execution time by issuing a GETPOOL macro
instruction, which specifies the address of the data control block,
the buffer length, and the desired number of buffers. When a
pool area is no longer needed, it can be returned to the system
by FREEPOOL.

Where the programmer's knowledge permits him to allocate
space more wisely than the control program, he may choose to
designate the area to be set aside for a buffer pool. The area may,

www.manaraa.com

190

for example, supplant a subroutine that is no longer needed. By
issuing a BUILD macroinstruction, he can request the system to
employ the reserved area as a buffer pool, the details being similar
to GETPOOL. With subsequent BUILD's, moreover, he can re
structure the area again and again.

QSAM corresponds closely to the schemes most favored in pre-
QSAM vious input/output systems. QSAM yields a great deal of service to

the programmer for a minimum investment in programming effort.
Retrieval is afforded by GET, which supplies one record to the
program; disposition of an output record is afforded by PUT or
PUTX. PUT transfers a record from a work area or buffer to a data
set; PUTX transfers a record from one data set to another. In con
sequence, PUT involves one data control block, whereas PUTX
involves two.

QISAM

BISAM

To aid the programmer in creating short blocks and in disposing
of a block before all records therein have been processed, two
macroinstructions permit intervention in buffer control. RELSE
requests the system to release the remaining buffer segments in an
input buffer, i.e., to view the buffer as empty. Analogously, TRUNC
asks the system to view an output buffer as full, and to go on to
another buffer.

FEOV requests the system to force an end-of-volume status
for a designated data set, and thereupon to undertake the normal
volume-switching procedure. CNTRL provides for specialized card
reader, printer, or tape control functions.

The QISAM scheme is closely akin to QSAM, but the macro
instructions provide the additional functions required of indexed
sequential data sets and direct-access devices. Records are ar
ranged in logical sequence on the key, a field that is part of each
record. Record keys are related to physical addresses by indexes.
For a record with a given data key, a cylinder index yields cylinder
address, and a track index yields track-within-cylinder address.
To facilitate in-channel searches, the key of the last record in
each block is placed in a hardware-defined control field.

In the initial creation of a data set, PUT's are used in the
"load" mode to store records and generate indexes. Successive
GET's in the "scan" mode retrieve records sequentially; SETL (set
lower limit) may be issued to designate the first record obtained.
Unless a SETL is issued, retrieval starts from the first record of
the data set. In scan mode, PUTX may follow a GET to return an
updated record to the data set. ESETL (end of scan) halts any
anticipatory buffering on the part of the system until issuance of a
subsequent GET.

BISAM applies to the same sequential data organization as
QISAM, but selective reading and writing is permitted through
the READ and WRITE macroinstructions. Using BISAM, new rec
ords can be inserted without destroying sequence. If an insertion
does not fit into the intended track, the system moves one or more
records from the track to an overflow area and then reflects this
overflow status in the appropriate indexes. (The existence of over-

www.manaraa.com

191

flows does not alter the ability of QISAM to scan records in logical
sequence.)

To permit other operations to be synchronized with BISAM

input/output operations, aWAIT macroinstruction supplements
READ and WRITE. (Because WAIT serves a general function in
synchronizing tasks, it is discussed in Part II.)

In a multitask enyironment, it is possible that one task may
want to use or update a record while the record is being updated
by another task. To forestall confusion in the order that updating
operations are accomplished, READ can request exc1usiye control
of the record during updating. For a record being updated in place,
WRITE releases exclusive control. If the record is not updated in
place, the RELEX macroinstruction can be used to release control.

Because record insertions may lead to overflows, and overflows
tend to reduce input/output performance, the system is designed
to provide statistics that can help a programmer in determining
when data-set reorganization is desirable. Held in the data control
block are the number of unused tracks in an independent oyerflow
area and, optionally, the number of full cylinder areas, as well as
the number of accesses to overflow records not appearing at the
head of overflow chains. Reorganization can be accomplished via
the QISAM load mode, using the existing data set as input.

As implied by the above discussion, QISAM and BISAM comple
ment one another and may be used together where the user needs
to access a data set randomly as well as sequentially. For the sake
of convenience, a data control block for an indexed sequential
data set can be opened jointly for QISAM and BISAM.

BSAM assumes a 8equentially organized data set and deals with BSAM
blocks rather than records. A block is called into a specified buffer
by READ. Unless program execution is deliberately suspended
during the retrieyal period by a CHECK macroinstruction, the
program may continue during reading. Similarly, after an output
operation is initiated, CHECK can be used to p08tpone further
processing until the operation is completed.2 Following a READ
or WRITE, the macroinstruction NOTE saves the applicable block
address in a standard register; subsequently, the preserved address
may be helpful in logically repositioning the yolume by POINT.

Of the access methods for direct-access devices, BDA~I offers BDAM
the greatest variety of access possibilities. Using WRITE and
READ, the programmer can store or retrieve a block from a data
set by specifying a track address and block number. Optionally,
he may specify a number relative to the data set itself, either (1)
a relative track number at which a search should start for a given
key or (2) a relatiye block number. The relatiye numbers, which
help to isolate application programs from device peculiarities, are
converted to actual track addresses and block numbers by the
system. GETBUF and FREEBUF are the means by which buffers
can be explicitly requested and released. A dynamic buffer option,
requested in the DeB macroinstruction, enables the programmer to
obtain automatic buffer management (BUILD and GETPOOL are

www.manaraa.com

192

not used in conjunction with the option). The FREEDBUF macro
instruction permits release of a buffer under the dynamic option.

BPAM is designed for storing and retrieving members of a
BPAM partitioned data set held on a direct-access device. Associated with

the data set is a directory that relates member name to track
address. To prepare for access, a FIND performs the directory
search. A located member can be retrieved using one or more
READ's, as required by the number of blocks in the member.
New members can be placed by one or more WRITE's, foUowed by a
STOW that enters the member's name and location in the directory.
CHECK again serves to synchronize the program with data
transmission operations.

data
control

block

A summary of the main characteristics of the eight access
methods appear in Table 3.

Control elements and system operation

With general definitions and access methods in mind, WE." turn to
the internal structure of OS/360 as it pertains to data management.

Associated with each data set of a problem program is a data
control block (DCB), which must be opened before any data transfer
takes place. However, some data sets, e.g., the catalog data set,
are opened automatically by the control program, and may be
indirectly referred to or used in a problem program without addi
tional opening or closing. Data-access macroinstructions, such
as GET and PUT, logically refer to a data set, but actual reference
is always via a data control block.

The data control block is generated and partially filled when
the DCB macroinstruction is encountered at compilation time.
The routine called at execution time by OPEN completes the
data control block with information gained principally from a
job-stream DD statement or cataloged procedure. For input data
sets, a final source of such information is the data-set label. In
the case of an output data set where the label has yet to be created,
the final source can be the label of another data set or another
DD statement.

In addition to completing the data control block, the OPEN
routine ensures that needed access routines are loaded and address
relations are completed. The routine prepares buffer areas and
generates channel command word lists; it initializes data sets by
reading or writing labels and performs a number of other house
keeping operations.

The selection of access routines is governed by choices in data
organization, buffering technique, access language, input/output
unit characteristics, and other factors. The selection is relayed to
the supervisor, which allocates main storage space and performs
the loading.

In operation, some access routines are treated as part of the
user's program and are entered directly rather than through a
supervisor-call interruption. These routines block and deblock

www.manaraa.com

T
ab

l.
 3

A

c .
..

. ·
m

.t
ha

d
lu

m
m

ar
y

C
ha

ra
ct

er
iB

lic

Q
S

A
M

Q

T
A

M

Q
I8

A
M

D
at

a
se

t
S

eq
ue

nt
ia

l
T

el
ec

om

In
de

xe
d

or
ga

ni
za

ti
on

or

 m
em

be
r

of

se
qu

en
ti

al

pa
rt

it
io

ne
d

B
R

lli
c

cl
em

en
 t

U
ec

or
d

M
cs

sA
ge

 o
r

R
ec

or
d

of
 d

at
a!

!C
t

m
es

sa
ge

 s
eg

m
en

t

B
N

li
c

co
nc

er
n

ll
cc

or
d

M
cs

sa
ge

R

ec
or

d
of

 a
cc

es
s

m
et

ho
d

P
ri

m
ar

y
in

pu
t

Sc
an

 S
E

T
L

an

d
G

E
T

G

E
T

Se

an
 G

E
T

o

u
tp

u
t

P
U

T

P
U

T

L
oa

d
P

U
T

m

ac
ro

in
st

ru
ct

io
ns

P

U
T

X

R
E

T
R

IE
V

E

S
ca

n
P

U
T

X

B
ut

T
er

B

U
IL

D

B
U

F
F

E
R

B

U
IL

D

po
ol

G

E
T

P
O

O
L

G

E
T

 P
O

O
L

ac

qu
is

it
io

n
A

ut
om

at
ic

A

uu
,m

lL
tic

B
ul

To
r

A
ut

.o
m

lL
tic

A

ul
m

na
t.i

c
A

llt
.o

m
nt

.io

m
nn

np
;o

llu
m

t
(A

im
"l

e
or

(d

llL
in

et
i.

(A
im

pl
o)

ru

r
R

eX

.,)
U

lII
Rt

l)
""

gm
cl

lt
)

dn
ta

 "
et

T
ra

ns
m

it
ta

l
M

ov
e

M
ov

e
M

ov
e

m
od

e
L

oc
at

e
L

oc
at

e
S

ub
st

it
ut

e

S
yn

ch
ro

ni
.a

ti
on

A

ut
om

at
ic

A

ut
om

at
ic

A

ut
.o

m
at

ic

B
cr

on
l/

hl
oc

k
1'

,
V

 r
ec

or
d

um
es

sa
ge

F

,
V

 r
ec

or
d

fo
rm

at
·

S
pe

ci
al

Se

qu
en

ce
 n

um
-

C
yl

in
de

r
pr

ov
is

io
ns

 f
or

be

r;
 r

el
at

iv
e

&
 t

ra
ck

da

tl
H

!e
t s

ea
rc

h
ad

dr
es

si
ng

in

de
xe

s

•
r,

 v
,

an
d

u
de

no
te

 f
ix

ed
,

va
ri

ab
le

,
an

d
un

sp
ec

if
ie

d
le

ng
th

s.

!

B
S

A
M

B

T
A

M

B
P

A
M

S
eq

ue
nt

ia
l

T
el

ec
om

P

ar
ti

ti
on

ed

R
ec

or
d

M
ee

sa
ge

M

em
be

r

-
- B

lo
ck

B

lo
ck

B

lo
ck

F
IN

D

R
E

A
D

R

E
A

D

R
E

A
D

W

R
IT

E

W
R

IT
E

W

R
IT

E

S
T

O
W

B
U

IL
D

B

U
IL

D

B
U

IL
D

G

E
T

P
O

O
L

G

E
T

P
O

O
L

G

E
T

P
O

O
L

A

ut
om

at
ic

A

ut
.o

m
at

ic

A
ut

om
at

ic

U
E

'l'B
U

I<
'

G
E

T
B

U
F

G

E
T

B
U

II

FR
E

E
B

U
I<

'
F

R
E

E
B

U
F

F

R
E

E
B

U
F

C
H

E
C

K

W
A

IT

C
n

E
C

K

W
A

rt
'

W
A

IT

P
,

v
re

co
rd

u

bl
oc

k
F

,
v,

 U
 b

lo
ck

D
ir

ec
to

ry

of

m
em

be
rs

B
le

A
M

In
de

xe
d

S
eq

ue
nt

ia
l

R
ec

or
d

B
lo

ck

R
E

A
D

W

R
IT

E

B
U

IL
D

G

F;
T

PO
O

J.

A
ut

.o
m

at
ic

D
yn

am
ic

FH

E
E

D
B

U
I<

'
-
-
-
-
-
-

G
E

T
B

U
II

F

R
E

E
B

U
F

W
A

IT

1'
,

v
re

co
rd

C
yl

in
de

r
&

 t
ra

ck

in
de

xe
s

-
-
-

-
-

B
D

A
M

D
ir

ec
t

R
ec

or
d

B
lo

ck

R
E

A
D

W

R
IT

E

B
U

IL
D

G

E
T

P
O

O
r.

A

ut
.o

m
at

ic

--
--

_.
_.

 -
D

yn
nm

ic

I+
'lm

E
I>

H
U

l"

-
-

--
--

--
--

-
G

E
T

B
U

I<
'

F
H

E
E

B
U

F

W
A

IT

F
,

v,
 u

 b
lo

ck

C
an

 u
se

re

la
ti

ve
 r

ec
or

d
or

 tr
ac

k
nu

m
be

r

.....
.

co

C
o)

www.manaraa.com

I/O supervisor

catalog

organization

194

records, control the buffers, and call the input/output supervitSor
when a request for data input or output is needed. Other routines,
treated as part of the I/O supervisor and therefore executed in the
privileged mode, perform error checks, prepare user-oriented
completion codes, post interruptions, and bridge discontinuities in
the storage areas assigned to a data set.

The input/output supervisor performs all actual device control
(as it must if contending prograJDS are not to conflict in device
usage); it accepts input/output requests, queues the requests if
necessary, and issues instructions when a path to the desired
input/output unit becomes available. The I/O supervisor also
ensures that input/output requests do not exceed the storage areas
allocated to a data set. The completion of each input/output
operation is posted and, where necessary, standard input/output
error-recovery procedures are performed. EXCP, the execute
channel program macroinstruction, is employed in all communica
tion between access routines and the input/output supervisor.

To portray the mechanics of data management, let us consider
one job step and the data-management operations that support a
READ macroinstruction for a cataloged data set in the BSAM

context.
To begin with, we observe the state of the system just before

the job is introduced; of interest at this point are the devices,
control blocks, prograJDS, and catalog elements that exist prior to
job entry. Next to be considered are the data-management act
ivities involved in DD-statement processing, and in establishment
by the job scheduler of a task for the given job step. Third, we
consider the activities governed by the OPEN macroinstruction;
these activities tailor the system to the requirements of the job
step. Finally, operation of the READ macroinstruction is con
sidered, with special attention to the use of the EXCP macro
instruction. Essential to the four stages of the discussion are four
cumulative displays. Frequent reference to numbered points within
the figures is made by means of parenthetical superscripts in the
text. The description refers more often to the objects generated
and manipulated by the system than to the functional programs
that implement the system.

The basic aspects of catalog implementation become apparent
when we consider the manner in which the system finds a volume
containing a cataloged data set. Recall that each direct-access
volume contains a volume label that locates its VTOC (volume
table of contents) and that the VTOC contains a data-set label for
each volume-contained data set. Identified by data-set name, the
data-set label holds attributes (such as record length) and specifies
the location in the volume of the data set.

Search for a data set begins (see Figure 1) in the VTOC of the
system residence volume, where a data-set label identifying the
portion of the catalog in this volume(l} appears. This part of the
catalog is itself organized as a partitioned data set whose directory
is the highest level (most significant) index of the catalog. For

www.manaraa.com

Figure 1 Con,rol element.. before job en'ry

LEGEND

~ MAIN StORAGE ADDRESS

~ RELATM: IWN STORAGE ADDRESS

_ CASD TRACK OR BLOCK ADORESS

~ MLATn.'t DASD TRACK OR BlaCK ADDRESS

----+ V01.UM£ IDENTlf'lCATtON NULtBER

----... INTERRUPTION

---.... OATA StT NAME

195

---- DATA DEnNmON STATEMENT NAME

-... OBJECT DATA now

--+ CONTROL DATA FlOW

o ''''OlCATE! Ttt.=.T JTEM POINTED TO IS ONE
OF A CHAIN OF SIMILAR ITEMS

'NiDJ::ATES TttAT THE SOURCE OF A POINTER
IS ;. TAS!.E r. HleH IDENTIFIES SIMILAR ITEMS

www.manaraa.com

unit

control

block

DD·statement

processing

196

data sets cataloged on the system residence volume, entries in this
directory contain the addresses of lower-level indexesj(2) for data
sets cataloged oil other control volumes, (3) directory entries con
tain the appropriate yolume identification number;;.

Assume for the moment that the search is for a data set cata
loged on control volume r and that V is not the system residence
volume. In this case, the yolume label of V contains the location of
V'S VTOC. (41 (Yolume label and VTOC are recorded separately to
allow for device peculiarities.) One of the data-set labels in this
VTOC identifies the part of the catalog on Vj(S) just as in the case
of the residence volume, this part is organized as a partitioned
data set. Inasmuch as the directory of this partitioned data set is
the subset of the highest-Ieyel index governing that part of the
catalog recorded on Y, directory entries contain the addresses of
the next-level indexes on r. (6) It should be added that all index
levels needed to catalog a data set appear on a single control
volume; the part of the catalog on any given control volume is
known to other control Yolumes, because the directory entries
of the given control volume appear in the directories of the others.

Each index level below the directory(7) is used to resolve one
qualification in the name of a data set. For example, were the
name of a data set A.B.C, a directory entry A would locate an index
containing an entry B, which in turn would locate an index con
taining the entry c. This last entry identifies the yolume (8) that
holds the data set named A.B.C.3

During the system generation process, one unit control block
(UCB) is created for each I iO device attached to the system (each
tape drive, disk driye. drum. card reader/punch, etc). Each UCB

contains device-status information, the relevant deyice address or
addresses, the locatiolls of the input/output supervisor sub
routines Cll) that treat deyice peculiarities (such as start-I/o, queue
Inanipulation, and error routines), and the location of the logical
channel queue Cl2) used with the device.·

The principal purpose of the DD statement (Figure 2) is to
supply the (variable) name of a data set to be located via the
catalog, (13) and to relate the data set to the (constant) name of the
DD statement. Howeyer, a great amount of additional information
may be supplied if the user desires. This information Inay include:
the device type together with a list of volume identification num
bers which serve to locate the data set without recourse to the
catalog;Cl4.IS) label information used to create new labels; attributes
that determine the nature of the data set created or processed;
and processing options that modify the operation of the program.
After being encoded by the job scheduler, most of this information
is included in a job .file control block (JFCB) (18) that is used in lieu of
the original DD statement.

As was suggested aboye, a data set can be located either by an
explicit list of yolume identification numbers and an indication of
the device type (if this information is given on the DD statement),
or by data-set llame alone. In the latter case, a list of volume

www.manaraa.com

197

figure 2 Control .Iements: iob acheduling--hexogonal blocks denote
elements of first concern at time iob is scheduled

LEGEND

I I

II i I.
141 115

-...I I

---~

~ MAIN STORAGE ADDRESS

- RELATIVE MAIN STORAGE ADDRESS

---.. CASD TRACK OR BLOCI'. ADDRESS

--- RELA lIVE CASD TRACK OR BLOCK AOORESS

----+ VOlUME 100NTIFICATtoN NUMBER

----"""' INTERRUPTION

---.... DATA SET NAME

17

---- OATA OEFINITION STATEMENT NAME

___ OBJECT DATA FLail

-----+- CONTROl. DATA FLOW

o INDICATES THAT ITEM POtNTED TO IS ONE
Of Ii. CHAIN OF SIMILAR ITEMS

INOICAns THAT THE SOURCE OF A POINTER
IS A TABLE VtHICH IDENTIFIES SIMILAR ITEMS

www.manaraa.com

198

identification llumbers is extracted from the catalog and placed
in the JFCB. (17)

Prior to establishing a task for the job step, the job scheduler
assigns devices to the step. To represent this assignment, the job
scheduler constructs a task input/output table (TIOT). An entry
is made in this table for each DD statement supplied by the user;
each entry relates a DD-statement name to the location of the
corresponding JFCB (18) and the unit or units assigned to the data
set. (19) The assignment of a specific device derives from the
specification of device type supplied through the DD statement (20)

or the catalog, (21) together with a table of available units main
tained by the job scheduler.

The job scheduler then assures that all volumes initially re
quired by the step are mounted. As each volume is mounted, its
volume label is read; the volume identification number and the
location of its VTOC are placed in the corresponding UCB for future
reference. (22) Finally, the job scheduler "attaches" a task for
the step. In the process, the supervisor constructs a task control
block (TCB). The TCB is used by the supervisor as an area in which
to store the general registers and program status word of a task
at a point of interruption; it contains the address of the TIOT. (23)

Execution of the OPEX macroinstruction (Figure 3) identifies
OPEN one or more data control blocks (DCB'S) to be initialized:(24) since

an svc interruption results, the TCB of the calling task(25) is also
identified. The name of the DD statement, contained in the DCB,
is used to locate the entry in the TIOT corresponding to the data
set to be processed. (23.26) The related JFCB is then retrieved. (18)

After assuring that the required volumes are mounted, (19) the
open subroutines read the data-set label(s) and place in the JFCB
all data-set attributes that were not specified (or overridden)
by the DD statement. (27) At this point, the Dcn and JFCB comprise a
complete specification of the attributes of the data set and the
access method to be used. K ext, data-set attributes and processing
options not specified by the DCB macroinstruction are passed from
the JFCB to the DCB. (28)

The system then constructs a data extent block (DEB), logically a
protected extension of the DCB. This block contains a description
of the extent (devices and track boundaries) of the data set, (29.30)

flags which indicate the set of channel commands that may be used
with the data set, (37) and a priority indicator. (3]) The DEB is nor
mally located via the DeB ;(32) but in order to purge a failing task
or close the DCB upon task termination, it may be located via
the TCB. (33) If the data set is to be retrieved sequentially, the
address of the first block of the data set is mm'ed to the DCB. (34)

Next, the access-method routines are selected and loaded. The
addresses of these routines are placed in the DCB. (35) If privileged
interrupt-handling or error routines are required, they are loaded
and their addresses recorded in the DEB. (36) Finally, the channel
programs ",hich ",ill Inter be used to access the data set are gene
rated. For each channel program, an input/output block (lOB) is

www.manaraa.com

199

Figure 3 Control .Iementl: OPE macroinstrudion--oblate blocks denote
.Iements of first concern during execution of OPEN macroinstruction

.... -
I
I
I
I
I
I.
I
I
I
I
I
I

i
I
I
I
I
I
I

I:
: I

,..--
I
I
I
I .51

141 :fs
_J I \.-....,3!!. _______ ----I ____ J

LEGEND

--+ MAIN STORAGE ADDRESS

.- RELATIVE MAIN STORAGE ADDRESS

___ OASO TRACK OR BLOCK ADDRESS

Ic::l
~

--- RELATIVE DASO TRACK OR BLOCK ADDRESS

----+0 VOLUME IDENTIFICATION NUMBER

----~ INTERRUPTION

---~ DATA SET NAME

EJ
---- OATA DEFINITION STATEMENT NAME

--.. OBJECT OATA FLOW

--.... CONTROL OATA FLOW

o INOICAT£S THAT ITEM POINTED TO tS ONE
OF A CHAIN OF SIMILAR ITEMS

INDICATES THAT THE SOURCE OF A POtNTER
IS A TABLE WHICH IDENTIFIES SIMILAR ITEMS

www.manaraa.com

200

created. (38) The lOB is the major interface between the problem
program (or the access-method. routines) and the I/O supervisor.
It contains flags that govern the channel program, the location
of the DCB, (19) the location of an event control block used with
the channel program, the location of the channel program itself,
the "seek address," and an area into which the I/O supervisor
can move the channel status word at the completion of the channel
program. lOB'S are linked in a chain originating at the DCB. (39)

The READ macroinstruction (see Figure 4) identifies a param-
READ eter list, called the data event control block (DECB), (40) that is pre

pared either by the user or the READ macroinstruction. This
block contains the address of a buffer, (41) the length of the block
to be read (or the length of the buffer), the address of the DCB

associated with the data set, (43) an event control block, and the
like. Buffer address and block or buffer length are obtained from
the DCB if not supplied by the user. (44) Using an address previously
placed in the DCB, (36) the READ macroinstruction branches to an
access-method routine that assigns an lOB and a channel program
to the DECB. Subsequently, the routine modifies the channel
program to reflect the block length and the location of the
buffer; (42) it then records the address of the DECB in the lOB. (46)

In addition, the routine computes the track and block addresses
of the next block and updates the lOB and channel program using
the results. (402.46.47.48) The access method routine then issues the
EXCP macroinstruction.

The EXCP macroinstruction causes an svc interruption (4V)

EXCP that calls the I/O supervisor and passes to it the addresses of the
lOB and, indirectly, the DCB. (69) Using the DCB, the address of
the DEB is obtained and verified. (32) Next, assuming that other
requests for the device are pending, the lOB is placed in a seek
queue to await the availability of the access mechanism. Queues
maintained by the lOS take the form of chains of request queue
elements (RQE'S) which identify the lOB'S in queues. (61) An RQE

contains a priority byte obtained from the DEB, (62) the address
of the DEB, (63) and the address of the TCB of the requesting task (64)

(used~.to purge the system of the lOB'S upon task termination).
Seek queues originate from UCB'S, (60) and are (optionally) main
tained in ascending sequence by cylinder address to reduce
average seek time.

When, as a result of the completion of other requests, the
access mechanism becomes available to the current lOB, a seek
operation is initiated using the track address in the lOB. Just prior
to this, the track address is verified (using the contents of the DEB)

to ensure that the seek address lies within the extent of the data
set. Assuming that the seek operation was not immediately com
pleted, seek commands to other devices are issued; the channel is
then used for other operations if possible. At the completion of the
relevant seek operation, (66) the RQE is removed from the top of the
seek queue and placed in the appropriate logical channel queue (66)

in priority sequence. For the performance of all of these functions,

www.manaraa.com

201

Figure 4 Control elemenls: READ and EXCP matroin.truction llipti<al blotko denote
.Iements of fint concern during execution of READ or EXCP macroinltrudion

-~.!--,..--,, __
I:
I I

r---
I
I
I

25~ ['4'9-------------
II
I:

r-----~~ __________ __

LEGEND

I I
I I
I I
I I

II
i I
I
I
I

I
I
I
!
I

I
I
I

.--. MAIN STORAGE ADDRESS

--a.. RELATIVE MAIN STORAGE ADDRESS

_ DASD TRACK OR BLOCK ADDRESS

---.. RELATIVE DAle TRACK OR BLOCK ADDRESS

____ + 'IIlLUME IDENTIFICATION NUMBER

----~ INTERRUPTION

---_ OATA SET NAME

•
.5

46

39

.2

------ DATA DEFINITION STATEMENT NAME

..... OBJECT OATA FLOW

_ CONTROL OATA FLOW

o INDICATES THAT iTEM POINTED TO IS ONE
01' A CHAIN 01' SIMILAR iTEMS

INDICATES THAT THE SOURC[OF A POINTER
IS A TABLE WHICH IDENTIFIES SIMILAR ITEMS

www.manaraa.com

202

device-dependent routines addressed by the UCB(lll are executed
by the I/O supervisor.

When the IOB reaches the top of the logical channel queue and a
related channel is free, the channel program associated with the
IOB is logically prefixed with a short supervisory channel program
and the result executed. The control unit is initialized by the
supervisory channel program to inhibit the channel program from
executing commands that might destroy information outside of
the extent of the data set, leave the channel and control unit unused
for significant periods, or attempt to write in a data set that is
to be used in a read-only manner.6 When the channel program
finishes, (66) its completion is posted in the event control block
within the DECB. (46) .

At any time after issuing a READ macroinstruction, the pro
gram may issue a WAIT or CHECK macroinstruction which refers
to the same DECB as the READ macroinstruction. Either of these
macroinstructions suspends the task (67.68) until the READ op
eration has been completed, i.e., until the I/O supelTisor posts
the completion of the operation in the DECB.

Although the foregoing discussion applies specifically to the
READ macroinstruction in the BSAM context and to the use of a
direct-access deyice, the first three displays (Figures 1, 2, and 3)
are applicable to other operations as well. In fact, the discussion
introduces most of the control elements that bear on data-manage
ment operations in any context.

Summary

The design of 05/360 assures that data sets of all kinds can be
systematically identified, stored, retrieved, and sun-eyed. Versa
tility is served by a yariety of techniques for structuring data sets,
catalogs, buffers, and data transfers. In the interest of operational
adaptability, the system tailors itself to actual needs on a dynamic
basis. For programming efficiency, source programs ma~r be device
independent to a noyel degree.

CITED REFERENCE AND FOOTNOTES

1. A. S. Noble, Jr., "Design of an integrated programming and operating
system, Part I, system considerations and the monitor," IB]! Systems
Joumal2, 153-161 (June 1963).

2. Although the CHECK macroinstruction includes the effect of the WAIT
macroinstruction, the latter may also be used prior to CHECK.

3. Ordinarily, the results of a catalog search include the device type, the
identification number of the desired volume, and label verification infor
mation. If the data set is a generation of a generation group (a case not
considered in the main discussion), the results are the location of an index
of generations and an archetype data-set label.

4. Generally, "logical channel" and physical channel are indistinguishable.
The logical channel is taken to be the set of physical channels by which
a device is accessible. All devices (independent of their type) that share
exactly the same set of physical channels are associated with the same logical
channel queue. For example, a set of tape drives attached to physical
channels 1 and 2 would share a logical channel distinct from that of a
printer attached only to physical channel 1.

www.manaraa.com

203

5. In general, the control unit is initialized to inhibit seek operations that
move the access mechanism. More stringent restrictions are placed on
channel programs that actually refer to cylinders shared by two or more
data sets. This is not to 88y that inter-cylinder seek operations are dis
allowed; rather, the I/O supervisor verifies that these operations refer to
areas within the extent of the data set. During inter-cylinder seek oper
ations, the channel and control unit are freed for other uses.

www.manaraa.com

Peter Chen

The Entity Relationship Model - Toward a Unified View
of Data

ACM Transactions on Database Systems, Vol. 1 (1), 1976

www.manaraa.com

The Entity-Relationship Model-Toward a
Unified View of Data

PETER PIN-SHAN CHEN

Massachusetts Institute of Technology

A data model, called the entity-relationship model, is proposed. This model incorporates some of
the important semantic information about the real world. A special diagrammatic technique is
introduced as a tool for database design. An example of database design and description using
the model and the diagrammatic technique is given. Some implications for data integrity, infor
mat.ion retrieval, and data manipulation are discussed.

The entity-relationship model can be used as a basis for unification of different views of data:
t.he network model, the relational model, and the entity set model. Semantic ambiguities in these
models are analyzed. Possible ways to derive their views of data from the entity-relationship
model are presented.

Key Words and Phrases: database design, logical view of data, semantics of data, data models,
entity-relationship model, relational model, Data Base Task Group, network model, entity set
model, data definition and manipulation, data integrity and consistency
CR Categories: 3.50, 3.70,4.33, 4.34

1. INTRODUCTION

The logical view of data has been an important issue in recent years. Three major
data models have been proposed: the network model [2, 3, 7J, the relational model
[8J, and the entity set model [25]. These models have their own strengths and
weaknesses. The network model provides a more natural view of data by separating
entities and relationships (to a oertain extent), but its capability to achieve data
independence has been challenged [8]. The relational model is based on relational
theory and can achieve a high degree of data independence, but it may lose some
important semantic information about the real world [12, 15, 23]. The entity set
model, which is based on set theory, also achieves a high degree of data inde
pendence, but its viewing of values such as "3" or "red" may not be natural to
some people [25].

This paper presents the entity-relationship model, which has most of the ad
vantages of the above three models. The entity-relationship model adopts the
more natural view that the real world consists of entities and relationships. It

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit; all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery.
A version of this paper was presented at the International Conference on Very Large Data Bases,
Framingham, Mass., Sept. 22-24, 1975.
Author's address: Center for Information System Research, Alfred P. Sloan School of Manage
ment, Massachusetts Institute of Technology, Cambridge, MA 02139.

www.manaraa.com

208

incorporates some of the important semantic information about the real world
(other work in database semantics can be found in [I, 12, 15, 21, 23, and 29J).
The model can achieve a high degree of data independence and is based on set
theory and relation theory.

The entity-relationship model can be used as a basis for a unified view of data.
~Iost work in the past has emphasized the difference between the network model
and the relational model [22]. Recently, severaL attempts _have been made to
reduce the differences of the three data models [4, 19,26, 30, 3IJ. This paper uses
the entity-relationship model as a framework from .which the three existing data
models may be derived. The reader may view the entity-relationship model as a
generaliza tion or extension of existing models.

This paper is organized into three parts (SeCtions 2-4.) ~ 'Section 2 introduces
the entity-relationship model using a framework' of multilevel views of data.
Section 3 describes the semantic information in the,model and its implications for
data description and data manipulation. A special'~rammatric technique, the
entity-relationship diagram, is introduced as a, tooLfo,' database design. Section 4
analyzes the network model, the relational modelt. and 'the entity set model, and
describes how they may be derived from the entity..r.eiationship model.

2. THE ENTITY·RELATIONSHIP MODEL

2.1 Multilevel Views of Data

In the st\!dy of a data model, we should identify the levels of logical views of data
with which the model is concerned. Extending:.theframework developed in [18, 25J,
we can identify four levels of views of data (Figure 1):

(1) Information concerning entities and relationsIPps which exist in our minds.
(2) Information structure-organization of iDforma.tion in which entities and

relationships are represented by data.
(3) Access-path-independent data structure-the da.ta,structures which are not

involved with search schemes, indexing schemes, etc.
(4) Access-path-dependent data structure.
In the following sections, we shall develop the entity-relationship model step by

step for the first two levels. As we shall see later in the paper, the network model,
as currently implemented, is mainly concerned with level 4; the relational model is
mainly concerned with levels 3 and 2; the entity set model is mainly concerned
with levels 1 and 2.

2.2 Information Concerning Entities and Relationships (Levell)

At this level we consider entities and relationships. An entity is a "thing" which
can be distinctly identified. A specific person, company, or event is an example of
an entity. A relationship is an association among entities. For instance, "father-son"
is a relationship between two "person" entities. l

1 It is possible that some people may view something (e.g. marriage) as an entity while other
people may view it as a relationship. We think that this is a decision which has to be made by
the enterprise administrator [27]. He should define what are entities and what are relationships
so that the distinction is suitable for his environment.

www.manaraa.com

209

LEVELS OF LOGICAL VIEWS MODELS

LEVEL I

INFORMATION CONCERNING
ENTITIES AND
RELAT IONSH I PS

LEVEL 2

INFORMATION STRUCTURE

LEVEL 3

ACCESS-PATH
INDEPENDENT
DATA STRUCTURE

LEVEL 4

ACCESS - PATH
DEPENDENT
DATA STRUCTURE

ENTITY-RELATIONSHIP NETWORK RELATIONAL ENTITY-SET

ENTITIES
ENTITY SETS
RELATIONSHIPS

ENTITIES
RELATIONSHIPS

RELATIONSHIP SETS ATTRIBUTES

ENTITIES
ENTITY SETS
ROLES

ATTRIBUTES VALUES 1
VALUES I
VALUE SETS I
ROLES I

~ ~~-----
ENTITY/RELATIONSHIP"'" I 3NF ENTITY
RELATION .. SIMILAR-RELATIONS DESCRIPTION

ENTITY-RELATIONSHIP l 1 SETS
DIAGRAM : DECOMPOSITION

l I APPROACH

TABLE : RELATIONS
I (TABLES)

I
I

t
RECORDS
DATA-STRUCTURE
SETS

DATA-STRUCTURE
DIAGRAM

Fig. 1. Analysis of data models using mult.iple levels of logical views

The database of an enterprise contains relevant information concerning entities
and relationships in which the enterprise is interested. A complete description of
an entity or relationship may not be recorded in the database of an enterprise.
It is impossible (and, perhaps, unnecessary) to record every potentially available
piece of information about entities and relationships. From now on, we shall
consider only the entities and relationships (and the information concerning them)
which are to enter into the design of a database.

2.2.1 Entity and Entity Set. Let e denote an entity which exists in our minds.
Entities are classified into different entity sets such as EMPLOYEE, PROJECT,
and DEPARTMENT. There is a predicate associated with each entity set to test
whether an entity belongs to it. For example, if we know an entity is in the entity
set EMPLOYEE, then we know that it has the properties common to the other
entities in the entity set EMPLOx~E. Among these properties is the afore
mentioned test predicate. Let Ei denote entity sets. Note that entity sets may not
be mutually disjoint. For example, an entity which belongs to the entity set MALE
PERSON also belongs to the entity set PERSON. In this case, MALE-PERSON
is a subset of PERSON.

2.2.2 Relationship, Role, and Relationship Set. Consider associations among
entities. A relationship set, R;, is a mathematical relation [5J among n entities,

www.manaraa.com

210

each taken from an entity set:

{[el, e2, ... , en] I el EEl, e2 E E2, ... , en E En},

and each tuple of entities, [el, e2, ... , en], is a relationship. K ote that the E; in the
above definition may not be distinct. For example, a "marriage" is a relationship
between two entities in the entity set PERSON.

The role of an entity in a relationship is the function that it performs in the
relationship. "Husband" and "wife" are roles. The ordering of entities in the
definition of relationship (note that square brackets were used) can be dropped if
roles of entities in the relationship are explicitly stated as follows: (rl/el, r2/e2, ... ,
r .. /e ..), where ri is the role of ei in the relationship.

2.2.3 Attribute, Value, and Value Set. The information about an entity or a
relationship is obtained by observation or measurement, and is expressed by a set
of attribute-value pairs. "3", "red", "Peter", and "Johnson" are values. Values
are classified into different value sets, such as FEET, COLOR, FIRST-NAME,
and LAST-NAME. There is a predicate associated with each value set to test
whether a value belongs to it. A value in a value set may be equivalent to another
value in a different value set. For example, "12" in value set INCH is equivalent
to "1" in value set FEET.

An attribute can be formally defined as a function which maps from an entity
set or a relationship set into a value set or a Cartesian product of value sets:

f: E. or R, - V, or V'i X V's X ..• XV",.

Figure 2 illustrates some attributes defined on entity set PERSON. The attribute
AGE maps into value set NO-OF-YEARS. An attribute can map into a Cartesian
product of value sets. For example, the attribute NAME maps into value sets
FIRST-NAME, and LAST-NAME. Note that more than one attribute may map
from the same entity set into the same value set (or same group of value sets).
For example, NAME and ALTERNATIVE-NAME map from the entity set
EMPLOYEE into value sets FIRST-NAME and LAST-NAME. Therefore, attri
bute and value set are different concepts although they may have the same name
in some cases (for example, EMPLOYEE-NO maps from EMPLOYEE to value
set EMPLOYEE-NO). This distinction is not clear in the network model and in
many existing data management systems. Also note that an attribute is defined as
a function. Therefore, it maps a given entity to a single value (or a single tuple of
values in the case of a Cartesian product of value sets).

Note that relationships also have attributes. Consider the relationship set
PROJECT-WORKER (Figure 3). The attribute PERCENTAGE-OF-TIME,
which is the portion of time a particular employee is committed to a particular
project, is an attribute defined on the relationship set PROJECT-WORKER. It
is neither an attribute of EMPLOYEE nor an attribute of PROJECT, since its
meaning depends on both the employee and project involved. The concept of
attribute of relationship is important in understanding the semantics of data and
in determining the functional dependencies among data.

2.2.4 Conceptual Information Structure. We are now concerned with how to
organize the information associated with entities and relationships. The method
proposed in this paper is to separate the information about entities from the infor-

www.manaraa.com

ENTITY SET

EI

(EMPLOYEE)

211

ATTRIBUTES

FI

(EMPOYEE-NO)

FZ

VALUE SETS

VI

(EMPLOYEE-NO)

V3
(LAST-NAME)

Fig. 2. Attributes defined on the entity set PERSON

mation about relationships. We shall see that this separation is useful in identifying
functional dependencies among data.

Figure 4 illustrates in table form the information about entities in an entity set.
Each row of values is related to the same entity, and each column is related to a
value set which, in turn, is related to an attribute. The ordering of rows and columns
is insignificant.

Figure 5 illustrates information about relationships in a relationship set. Note
that each row of values is related to a relationship which is indicated by a group
of entities, each having a specific role and belonging to a specific entity set.

Note that Figures 4 and 2 (and also Figures 5 and 3) are different forms of the
same information. The table form is used for easily relating to the relational model.

www.manaraa.com

ENTITY SETS

EK
(EMPLOYEE)

212

RELATIONSHIP SETS ATTRIBUTE

F

(PERCENTAGE-OF
TIME)

VALUE SET

VK
(PERCENT)

Fig. 3. Attributes defined on the relationship set PROJECT-WORKER

2.3 Information Structure (level 2)

The entities, relationships, and values at level 1 (see Figures 2-5) are conceptual
objects in our minds (Le. we were in the conceptual realm [18, 27J). At level 2,
we consider representations of conceptual objects. We assume that there exist
direct representations of values. In the following, we shall describe how to represent
entities and relationships.

2.3.1 Primary Key. In Figure 2 the values of attribute EMPLOYEE-NO can
be used to identify entities in entity set EMPLOYEE if each employee has a
different employee number. It is possible that more than one attribute is needed
to identify the entities in an entity set. It is also possible that several groups of
attributes may be used to identify entities. Basically, an entity key is a group of
attributes such that the mapping from the entity set to the corresponding group
of value sets is one-to-one. If we cannot find such one-to-one mapping on available
data, or if simplicity in identifying entities is desired, we may define an artificial
attribute and a value set so that such mapping is possible. In the case where

www.manaraa.com

213

r-----T-----I-----,-----.
ATTRIBUTE ' I I : I
ENTITY SET I FI I F2 I F3 I F4 I

'"'" I I I (ALTERNATIVE- I '
AND VALUE SET" (EMPLOYEE-NO) I (NAME) I NAME) I (AGE) I

r-----~-----r--T--T--T--~-----~
I I I I , I I I

EI I VI I V2 I V3 I V2 I V3 I V4 ,

: ' I (FIRST-'(LAST-1(FIRST-I(LAST-' I

'
(EMPLOYEE) I (EMPLOYEE-NO)' NAME) I NAME) , NAME) , NAME) I(NO-OF-YEARS) ,

I I I I I I J ,-----
I
, el , ,
r-----
I
I e2

I ,
~---- -
I • , .
I •
I • L ____ _

VII v21
(2566) (PETER)

VI2 V23

(3378) (MARY)

•
•
•
•

V31 V22 v31
(JONES) (SAM) (JONES)

V32 V24 v33

(CHEN) (BARB) (CHEN)

• •
• •
• •
• •

Fig. 4. Information about entities in an entity set (table form)

r-----r----'
I I I

ROLE- -t WORKER I PROJECT I
I I I

V41
(25)

V42

(23)

•
•
•
•

L _____ ~ ____ ~ _______ ,

I F I RELATIONSHIP
I (PERCENTAGE-OF- I
I TIME) I ATTRIBUTE

r-----T----~'--------t
I I E I V

ENTITY El J I K VALUE
SET -----l (EMPLOYEE) : (PROJECT) I (PERCENTAGE) SET

~-----~----+------I
, I
I ell I
I I
I I
r-- - - - -r - - - -I--------i

I • I •
I • I •
I • ,. •
L __ ~ __ L_ ~ --....1.---------'

•
•
•

Fig. 5. Information about relationships in a relationship set (table form)

www.manaraa.com

214

EMPOYEE-NO

EMPLOYEE-NO

Fig. 6. Representing entities by values (employee numbers)

several keys exist, we usually choose a semantically meaningful key as the entity
primary key (PK).

Figure 6 is obtained by merging the entity set EMPLOYEE with value set
EMPLOYEE-NO in Figure 2. We should notice some semantic implications of
Figure 6. Each value in the value set EMPLOYEE-NO represents an entity
(employee). Attributes map from the value set EMPLOYEE-NO to other value
sets. Also note that the attribute EMPLOYEE-NO maps from the value set
EMPLOYEE-NO to itself.

2.3.2 Entity/Relationship Relations. Information about entities in an entity
set can now be organized in a form shown in Figure 7. Note that Figure 7 is similar
to Figure 4 except that entities are represented by the values of their primary
keys. The whole table in Figure 7 is an entity relation, and each row is an entity
tuple.

Since a relationship is identified by the involved entities, the primary key of a
relationship can be represented by the primary keys of the involved entities. In

www.manaraa.com

,--,
ATTRIBUTE I

I
I

VALUE SET

r-- PRIMARY--j
I KEY I

EMPLOYEE-NO

215

NAME ALTERNATIVE-
AGE NAME

EMPLOYEE-NO FIRST- LAST- FIRST- LAST-
NO-OF-YEARS NAME NAME NAME NAME r (DOMAIN)

~
w

2566 PETER JONES SAM JONES 25
ENTITY :;:
(TUPLE) J

c(

Z
0

3378 MARY CHEN 8ARB CHEN 23 ~
c(
J
W

• • • • • •
• • • • • • • • • • • •

a:

l
Fig. 7. Regular entity relation EMPLOYEE

Figure 8, the involved entities are represented by their primary keys EMPLOYEE
NO and PROJECT-NO. The role names provide the semantic meaning for the
values in the corresponding columns. Note that EMPLOYEE-NO is the primary
key for the involved entities in the relationship and is not an attribute of the
relationship. PERCENTAGE-OF-TIME is an attribute of the relationship. The
table in Figure 8 is a relationship relation, and each row of values is a relationship
tuple.

In certain cases, the entities in an entity set cannot be uniquely identified by
the values of their own attributes; thus we must use a relationship(s) to identify
them. For example, consider dependents of employees: dependents are identified
by their names and by the values of the primary key of the employees supporting
them (i.e. by their relationships with the employees). Note that in Figure 9,

ENTITY RELATION
NAME

ROLE

T
ENTITY
ATTRIBUTE

VALUE SET
(DOMAIN)

RELATIONSHIP
TUPLE

I
I
I

T
~
w
:;:
J «
~
~
J
W
a:

1

""_--- PRIMARY ____ ~ r KEY "I
EMPLOYEE PROJECT

WORKER PROJECT

EMPLOYEE-NO PROJECT-NO
PERCENTAGE-

OF-TIME

EMPLOYEE-NO PROJECT-NO PERCEr'lTAGE

2566 31 20

2173 25 100

· • · • • · · · •

Fig. 8. Regular relationship relation PROJECT-WORKER

RELATIONSHIP
ATTRIBUTE

www.manaraa.com

ENTITY
RELATION NAME

ROLE

ENTITY
ATTRIBUTE

VALUE SET
(DOMAIN)

ENTITY
TUPLE

.
I
I
I

t
~
UJ

'>
..J
~

5
~
..J
UJ
a:

L

216

PRIMARY 1-1"-- KEY ---I-I
EMPLOYEE

SUPPORTER

EMPLOYEE-NO NAME

EMPLOYEE-NO FIRST-NAME

2566 VICTOR

2173 GEORGE

• • • • • •

AGE

NO-OF-YEARS

3

6

• • •
Fig. 9. A weak entity relat.ion DEPENDENT

RELATIONSHIP
ATTRIBUTE

RELATIONSHIP
ATTRIBUTE

EMPLOYEE-NO is not an attribute of an entity in the set DEPENDENT but
is the primary key of the employees who support dependents. Each row of values
in Figure 9 is an entity tuple with EMPLOYEE-NO and NAME as its primary
key. The whole table is an entity relation.

Theoretically, any kind of relationship may be used to identify entities. For
simplicity, we shall restrict ourselves to the use of only one kind of relationship:
the binary relationships with 1: n mapping in which the existence of the n entities
on one side of the relationship depends on the existence of one entity on the other
side of the relationship. For example, one employee may have n (= 0, 1, 2, ...)
dependents, and the existence of the dependents depends on the existence of the
corresponding employee.

This method of identification of entities by relationships with other entities can
be applied recursively until the entities which can be identified by their own at
tribute values are reached. For example, the primary key of a department in a
company may consist of the department number and the primary key of the
division, which in turn consists of the division number and the name of the company.

Therefore, we have two forms of entity relations. If relationships are used for
identifying the entities, we shall call it a weak entity relation (Figure 9). If relation
ships are not used for identifying the entities, we shall call it a regular entity relation
(Figure 7). Similarly, we also have two forms of relationship relations. If all
entities in the relationship are identified by their own attribute values, we shall
call it a regular relationship relation (Figure 8). If some entities in the relationship
are identified by other relationships, we shall call it a weak relationship relation.
For example, an~' relationships between DEPENDENT entities and other entities
will result in weak relationship relations, since a DEPENDENT entity is identified
by its name and its relationship with an EMPL01'"EE entity. The distinction
between regular (entity/relationship) relations and weak (entity/relationship)
relations will be useful in maintaining data integrity.

www.manaraa.com

EMPLOYEE

ENTITY SET

WORKER

M

217

RELATIONSHIP
SET

PROJECT

N

Fig. 10. A simple entity-relationship diagram

PROJECT

ENTITY SET

3. ENTITY-RELATIONSHIP DIAGRAM AND INCLUSION OF SEMANTICS IN
DATA DESCRIPTION AND MANIPULATION

3.1 System Analysis Using the Entity-Relationship Diagram

In this section we introduce a diagrammatic technique for exhibiting entities and
relationships: the entity-relationship diagram.

Figure 10 illustrates the relationship set PROJECT-WORKER and the entity
sets EMPLOYEE and PROJECT using this diagrammatic technique. Each entity
set is represented by a rectangular box, and each relationship set is represented by
a diamond-shaped box. The fact that the relationship set PROJECT-WORKER
is defined on the entity sets EMPLOYEE and PROJECT is represented by the
lines connecting the rectangular boxes. The roles of the entities in the relationship
are stated.

DEPARTMENT

SUPPLIER

PROJECT PART

Fig. 11. An entity-relationship diagram for analysis of information in a manufacturing firm

www.manaraa.com

218

Figure 11 illustrates a more complete diagram of some entity sets and relationship
sets which might be of interest to a manufacturing company. DEPARTMEKT,
E~IPLOYEE, DEPEKDEN"T, PROJECT, SUPPLIER, and PART are entity
sets. DEPART:'IIENT-EMPLOYEE, E:\IPLOYEE-DEPEXDENT, PROJECT
WORKER, PROJECT-l\fASAGER, SUPPLIER-PROJECT-PART, PRO
JECT-PART, and CO~IPOKEXT are relationship sets. The COMPONENT
relationship describes what subparts (and quantities) are needed in making super
parts. The meaning of the other relationship sets need not be explained.

Several important characteristics about relationships in general can be found in
Figure 11:

(1) A relationship set may be defined on more than two entity sets. For example,
the SUPPLIER-PROJECT-PART relationship set is defined on three entity sets:
SUPPLIER, PROJECT, and PART.

(2) A relationship set may be defined on only one entity set. For example, the
relationship set COMPONENT is defined on one entity set, PART.

(3) There may be more than one relationship set defined on given entity sets.
For example, the relationship sets PROJECT-WORKER and PROJECT
MANAGER are defined on the entity sets PROJECT and El\fPLOYEE.

(4) The diagram can distinguish between l:n, m:n, and 1:1 mappings. The
relationship set DEPARTMENT-El\IPLOYEE is a l:n mapping, that is, one
department may have n (n = 0, 1,2, ...) employees and each employee works for
only one department. The relationship set PROJECT-WORKER is an m:n
mapping, that is, each' project may have zero, one, or more employees assigned to
it and each employee may be assigned to zero, one, or more projects. It is also
possible to express 1: 1 mappings such as the relationship set MARRIAGE. Infor
mation about the number of entities in each entity set which is allowed in a relation
ship set is indicated by specifying "1", "m", "n" in the diagram. The relational
model and the entity set model2 do not include this type of information; the network
model cannot express a 1: 1 mapping easily.

(5) The diagram can express the existence dependency of one entity type on
another. For example, the arrow in the relationship set EMpLOYEE-DEPEND
ENT indicates that existence of an entity in the entity set DEPENDENT de
pends on the corresponding entity in the entity set EMPLO'fEE. That is, if an
employee leaves the company, his dependents may no longer be of interest.

Note that the entity set DEPENDENT is shown as a special rectangular box.
This indicates that at level 2 the information about entities in this set is organized
as a weak entity relation (using the primary key of EMPLOYEE as a part of its
primary key).

3.2 An Example of a Database Design and Description

There are four steps in designing a database using the entity-relationship model:
(1) identify the entity sets and the relationship sets of interest; (2) identify
semantic information in the relationship sets such as whether a certain relationship

2 This mapping information is included in DIAM II [24J.

www.manaraa.com

219

set is an l:n mapping; (3) define the value sets and attributes; (4) organize data
into entity/relationship relations and decide primary keys.

Let us use the manufacturing company discussed in Section 3.1 as an example.
The results of the first two steps of database design are expressed in an entity
relationship diagram as shown in Figure 11. The third step is to define value sets
and attributes (see Figures 2 and 3). The fourth step is to decide the primary
keys for the entities and the relationships and to organize data as entity/relation
ship relations. Note that each entity/relationship set in Figure 11 has a corre
sponding entity/relationship relation. We shall use the names of the entity sets
(at level 1) as the names of the corresponding entity/relationship relations (at
level 2) as long as no confusion will result.

At the end of the section, we illustrate a schema (data definition) for a small
part of the database in the above manufacturing company example (the syntax
of the data definition is not important). Note that value sets are defined with
specifications of representations and allowable values. For example, values in
EMPLOYEE-NO are represented as 4-digit integers and range from 0 to 2000.
We then declare three entity relations: EMPLOYEE, PROJECT, and DE
PENDENT. The attributes and value sets defined on the entity sets as well as
the primary keys are stated. DEPENDENT is a weak entity relation since it uses
EMPLOYEE.PK as part of its primary key. We also declare two relationship
relations: PROJECT-WORKER and EMPLOYEE-DEPENDENT. The roles
and involved entities in the relationships are specified. We use EMPLOYEE.PK
to indicate the name o~ the entity relation (EMPLOYEE) and whatever attribute
value-set pairs are used as the primary keys in that entity relation. The maximum
number of entities from an entity set in a relation is stated. For example, PROJECT
WORKER is an m:n mapping. We may specify the values of m and n. We may
also specify the minimum number of entities in addition to the maximum number.
EMPLOYEE-DEPENDENT is a weak relationship relation since one of the
related entity relations, DEPENDENT, is a weak entity relation. Note that the
existence dependence of the dependents on the supporter is also stated.

DECLARE

DECLARE

VALUE-8ETS REPRESENTATION ALLOWABLE-VALUES
EMPLOYEE-NO INTEGER (4) (0,2000)
FIRST-NAME CHARACTER (8) ALL
LAST-NAME CHARACTER (10) ALL
NO-OF-YEARS INTEGER (3) (0,100)
PROJECT-NO INTEGER (3) (1,500)
PERCENTAGE FIXED (5.2) (0,100.00)

REGULAR ENTITY RELATION EMPLOYEE
ATTRIBUTE/VALUE-8ET:

EMPLOYEE-NO /EMPLOYEE-NO
NAME/(FIRST-NAME, LAST-NAME)
ALTERNATIVE-NAME/(FIRST-NAME,LAST-NAME)
AGE/NO-OF-YEARS

PRIMARY KEY:
EMPLOYEE-NO

www.manaraa.com

DECLARE

DECLARE

DECLARE

DECLARE

220

REGULAR ENTITY RELATION PROJECT
A TTRlBUTE/Y AL UE-8ET:

PROJECT-NO/PROJECT-NO
PRIMARY KEY:

PROJECT-NO

REGULAR RELATIONSHIP RELATION PROJECT-WORKER
ROLE/ENTITY-RELATION.PK/MAX-NO-OF-ENTITIES

WORKER/El\lPLOYEE.PK/m
PROJECT/PROJECT.PK/n (m:n mapping)

ATTRIBUTE/VALUE-SET:
PERCENT AGE-OF-TIME/PERCENTAGE

WEAK RELATIONSHIP RELATION EMPLOYEE-DEPENDENT
ROLE/ENTITY-RELATION.PK/MAX-NO-OF-ENTITIES

SUPPORTER/EMPLOYEE.PK/l
DEPENDENT /DEPENDENT.PK/n

EXISTENCE OF DEPENDENT DEPENDS ON
EXISTENCE OF SUPPORTER

WEAK ENTITY RELATION DEPENDENT
ATTRIBUTE/VALUE-8ET:

NAME/FIRST-NAME
AGE/NO-OF-YEARS

PRIMARY KEY:
NAME
EMPLOYEE.PK THROUGH EMPLOYEE-DEPENDENT

3.3 Implications on Data Integrity

Some work has been done on data integrity for other models [8, 14, 16, 28J. With
explicit concepts of entity and relationship, the entity-relationship model will be
useful in understanding and specifying constraints for maintaining data integrity.
For example, there are three major kinds of constraints on values:

(1) Constraints on allowable values for a value set. This point was discussed in
defining the schema in Section 3.2.

(2) Constraints on permitted values for a certain attribute. In some cases, not
all allowable values in a value set are permitted for some attributes. For example,
we may have a restriction of ages of employees to between 20 and 65. That is,

AGE (e) E (20,65), where e E EMPLOYEE.

Note that we use the level 1 notations to clarify the semantics. Since each entity/
relationship set has a corresponding entity/relationship relation, the above expres
sion can be easily translated into level 2 notations.

(3) Constraints on existing values in the database. There are two types of
constraints:

(i) Constraints between sets of existing values. For example,

/NAME(e) leE MALE-PERSON} C /NAME(e) leE PERSON}.

www.manaraa.com

221

(ii) Constraints between particular values. For example,

TAX (e) ~ SALARY(e), e E EMPLOYEE
or

BUDGET(e.) = LBUDGET(e;), ",·here e. E COMPANY
e; E DEPARTMENT

and [e.,e;] E COMPANY-DEPARTMENT.

3.4 Semantics and Set Operations of Information Retrieval Requests

The semantics of information retrieval requests become very clear if the requests
are based on the entity-relationship model of data. For clarity, we first discuss
the situation at level 1. Conceptually, the information elements are organized as
in Figures 4 and 5 (on Figures 2 and 3). Many information retrieval requests can
be considered as a combination of the following basic types of operations:

(1) Selection of a subset of values from a value set.
(2) Selection of a subset of entities from an entity set (i.e. selection of certain

rows in Figure 4). Entities are selected by stating the values of certain attributes
(i.e. subsets of value sets) and/or their relationships with other entities.

(3) Selection of a subset of relationships from a relationship set (i.e. selection
of certain rows in Figure 5). Relationships are selected by stating the values of
certain attribute(s) and/or by identifying certain entities in the relationship.

(4) Selection of a subset of attributes (i.e. selection of columns in Figures 4
and 5).

An information retrieval request like "What are the ages of the employees whose
weights are greater than 170 and who are assigned to the project with PROJECT
NO 254?" can be expressed as:

{AGE(e) leE EMPLOYEE, WEIGHT(e) > 170,
[e, e;] E PROJECT-WORKER, ej E PROJECT,
PROJECT-NO(ej) ... 254);

or

{AGE(EMPLOYEE) I WEIGHT(EMPLOYEE) > 170,
[EMPLOYEE,PROJECT] E PROJECT-WORKER,
PROJECT-NO(EMPLOYEE) = 254).

To retrieve information as organized in Figure 6-at level 2, "entities" and
"relationships" in (2) and (3) should be replaced by "entity PK" and "relationship
PIC' The above information retrieval request can be expressed as:

{AGE(EMPLOYEE.PK) I WEIGHT(EMPLOYEE.PK) > 170
(WORKER/EMPLOYEE.PK,PROJECT/PROJECT.PK) E {PROJECT-WORKER.PK),
PROJECT-NO (PROJECT.PK) = 254).

To retrieve information as organized in entity/relationship relations (Figures 7,
8, and 9), we can express it in a SEQt:'EL-like language [6J:

SELECT
FROM
WHERE

AGE
EMPLOYEE
WEIGHT> 170

www.manaraa.com

222

Table 1. Insertion

levell

opera/ion:
insert an entity to an entity set

operation:
insert a relationship in a relationship set

check:
whether the entities exist

operation:
insert properties of an entity or a relationship

check:
whether the value is acceptable

AND EMPLOYEE.PK =

level 2

opera/ion:
create an entity tuple with a certain entity-PK
check:
whether PK already exists or is acceptable

operation:
create a relationship tuple with given entity

PEs
check:
whether the entity PKs exist

operation:
insert values in an entity tuple or a relation

ship tuple
check:
whether the values are acceptable

SELECT WORKER/EMPLOYEE.PK
FROM PROJECT-WORKER
WHERE PROJECT-NO = 254.

It is possible to retrieve information about entities in two different entity sets
without specifying a relationship between them. For example, an information
retrieval request like "List the names of employees and ships which have the same

Table II. Updating

levell

operation:
• change the value of an entity attribute

opera/ion:
• change the vallie of a relationship attribute

operation:
• update a value
C01I8equence:

level 2

• if it is not part of an entity PK, no conse
quence

• if it is part of an entity PK,
•• change the entity PKs in all related

relationship relations
•• change PKs of other entities which use

this value as part of their PKs (for
example, DEPENDENTS' PKs use
EMPLOYEE'S PK)

opera/ion:
• update a value (note that a relationship

attribute will not be a relationship PK)

www.manaraa.com

223

Table III. Deletion

operation:
• delete an entity
consequences:

level 1

• delete any entity whose existence depends
on this entity

• delete relationships involving this entity
• delete all related properties

operation:
• delete a relationship
consequences:
• delete all related properties

level 2

operation:
• delete an entity tuple
consequences (applied recursively):
• delete any entity tuple whose existence de

pends on this entity tuple
• delete relationship tuples associated with

this entity

operation:
• delete a relationship tuple

age" can be expressed in the level 1 notation as:

(NAME(e;),NAME(e;)) I e; E EMPLOYEE,ej E SHIP, AGE(e;) = AGE(ej)}.

We do not further discuss the language syntax here. What we wish to stress is
that information requests may be expressed using set notions and set operations
[17J, and the request semantics are very clear in adopting this point of view.

3.5 Semantics and Rules for Insertion, Deletion, and Updating

It is always a difficult problem to maintain data consistency following insertion,
deletion, and updating of data in the database. One of the major reasons is that
the semantics and consequences of insertion, deletion, and updating operations
usually are not clearly defined; thus it is difficult to find a set of rules which can
enforce data consistency. We shall see that this data consistency problem becomes
simpler using the entity-relationship model.

In Tables I-III, we discuss the semantics and rules3 for insertion, deletion, and
updating at both level 1 and level 2. Levell is used to clarify the semantics.

4. ANALYSIS OF OTHER DATA MODELS AND THEIR DERIVATION FROM THE
ENTITY-RELATIONSHIP MODEL

4.1 The Relational Model

4.1.1 The Relational View of Data and Ambiguity in Semantics. In the re
lational model, relation, R, is a mathematical relation defined on sets Xli X 2, ••• ,

Xn:
R = {(Xl, X2, ..• , Xn) I Xl E Xl, X2 E X 2, ••• , Xn E Xn}.

The sets Xl, x 2, ••• , Xn are called domains, and (Xl, X2, ••• , Xn) is called a tuple.
Figure 12 illustrates a relation called E:\IPLOYEE. The domains in the relation

3 Our main purpose is to illustrate the semantics of data manipulation operations. Therefore,
these rules may not be complete. Note that the consequence of operations stated in the tables
can be performed by the system instead of by the users.

www.manaraa.com

224

ROLE LEGAL LEGAL ALTERNATIVE ALTERNATIVE

EMPLOYEE- FIRST- LAST- FIRST- LAST- NO-OF-
NO NAME NAME NAME NAME YEARS DOMAIN

TUPLE 2566 PETER JONES SAM JONES 25

3378 MARY CHEN BARB CHEN 23

Fig. 12. Relation EMPLOYEE

are E:\IPLOYEE-NO, FIRST-NA1IE, LAST-NAME, FIRST-NAME, LAST
NAME, NO-OF-YEAR. The ordering of rows and columns in the relation has
no significance. To avoid ambiguity of columns with the same domain in a relation,
domain names are qualified by roles (to distinguish the role of the domain in the
relation). For example, in relation El'IPLOYEE, domains FIRST-NAME and
LAST-NAME may be qualified by roles LEGAL or ALTERNATIVE. An attribute
name in the relational model is a domain name concatenated with a role name [10].
Comparing Figure 12 with Figure i, we can see that "domains" are basically equiva
lent to value sets. Although "role" or "attribute" in the relational model seems to
serve the same purpose as "attribute" in the entity-relationship model, the se
mantics of these terms are different. The "role" or "attribute" in the relational
model is mainly used to distinguish domains with the same name in the same
relation, while "attribute" in the entity-relationship model is a function which
maps from an entity (or relationship) set into value set(s).

Using relational operators in the relational model may cause semantic ambi
guities. For example, the join of the relation EMPLOYEE with the relation
EMPLOYEE-PROJECT (Figure 13) on domain EMPLOYEE-NO produces the

PROJECT-NO EMPLOYEE-NO

7 2566

3 2566

7 3378

Fig. 13. Relation E~IPLOYEE-PROJECT

www.manaraa.com

225

LEGAL LEGAL ALTERNATIVE ALTERNATIVE

PROJECT- EMPLOYEE- FIRST- LAST- FIRST- LAST- NO-OF-
NO NO NAME NAME NAME NAME YEARS

7 2566 PETER JONES SAM JONES 25

3 2566 PETER JONES SAM JONES 25

7 3378 MARY CHEN BARB CHEN 23

Fig. 14. Relation EMPLOYEE-PROJECT' as a "join" of relations EMPLOYEE and
EMPLOYEE-PROJECT

relation EMPLOYEE-PROJECT' (Figure 14). But what is the meaning of a
join between the relation EMPLOYEE with the relation SHIP on the domain
NO-OF-YEARS (Figure 15)? The problem is that the same domain name may
have different semantics in different relations (note that a role is intended to dis
tinguish domains in a given relation, not in all relations). If the domain N0-0F
YEAR of the relation EMPLOYEE is not allowed to be compared with the domain
NO-OF-YEAR of the relation SHIP, different domain names have to be declared.
But if such a comparison is acceptable, can the database system warn the user?

In the entity-relationship model, the semantics of data are much more apparent.
For example, one column in the example stated above contains the values of AGE
of EMPLOYEE and the other column contains the values of AGE of SHIP. If
this semantic information is exposed to the user, he may operate more cautiously
(refer to the sample information retrieval requests stated in Section 3.4). Since
the database system contains the semantic information, it should he able to warn
the user of the potential problems for a proposed "join-like" operation.

4.1.2 Semantics of Functional Dependencies Among Data. In the relational
model, "attribute" B of a relation is functionally dependent on "attribute" A of the
same relation if each value of A has no more than one value of B associated with
it in the relation. Semantics of functional dependencies among data become clear

SHIP-NO NAME NO-Of-YEARS

037 MISSOURI 25

056 VIRGINIA 10

Fig. 15. Relation SHIP

www.manaraa.com

226

in the entity-relationship model. Basically, there are two major types of functional
dependencies:

(1) Functional dependencies related to description of entities or relationships.
Since an attribute is defined as a function, it maps an entity in an entity set to a
single value in a value set (see Figure 2). At level 2, the values of the primary key
are used to represent entities. Therefore, nonkey value sets (domains) are func
tionally dependent on primary-key value sets (for example, in Figures 6 and 7,
NO-OF-YEARS is functionally dependent on EMPLOYEE-l\O). Since a relation
may have several keys, the nonkey value sets will functionally depend on any key
value set. The key value sets will be mutually functionally dependent on each
other. Similarly, in a relationship relation the nonkey value sets will be functionally
dependent on the prime-key value sets (for example, in Figure 8, PERCENTAGE
is functionally dependent on EMPLOYEE-NO and PROJECT-NO).

(2) Functional dependencies related to entities in a relationship. Note that
in Figure 11 we identify the types of mappings (1 :n, m:n, etc.) for relationship
sets. For example, PROJECT-MANAGER is a 1:n mapping. Let us assume that
PROJECT-NO is the primary key in the entity relation PROJECT. In the re
lationship relation PROJECT-MANAGER, the value set EMPLOYEE-NO will
be functionally dependent on the value set PROJECT-NO (i.e. each project has
only one manager).

The distinction between level 1 (Figure 2) and level 2 (Figures 6 and 7) and
the separation of entity relation (Figure 7) from relationship relation (Figure 8)
clarifies the semantics of functional dependencies among data.

4.1.3 3NF Relations Versus Entity-Relationship Relations. From the definition
of "relation," any grouping of domains can be considered to be a relation. To avoid
undesirable properties in maintaining relations, a normalization process is proposed
to transform arbitrary relations into the first normal form, then into the second
normal form, and finally into the third normal form (3NF) [9, 11]. We shall
show that the entity and relationship relations in the entity-relationship model
are similar to 3NF relations but with clearer semantics and without using the
transformation operation.

Let us use a simplified version of an example of normalization described in [9J.
The following three relations are in first normal form (that is, there is no domain
whose elements are themselves relations) :

EMPLOYEE (EMPLOYEE-NO)
PART (PART-NO, PART-DESCRIPTION, QUANTITY-ON-HAND)
PART-PROJECT (PART-NO, PROJECT-NO, PROJECT-DESCRIPTION,

PROJECT-MANAGER-NO, QUANTITY-COMMITTED).

Note that the domain PROJECT-MANAGER-NO actually contains the
EMPLOYEE-NO of the project manager. In the relations above, primary keys
are underlined.

Certain rules are applied to transform the relations above into third normal
form:

EMPLOYEE' (EMPLOYEE-NO)
PART' (PART-NO, PART-DESCRIPTION, QUANTITY-ON-HAND)

www.manaraa.com

227

PROJECT' (PROJECT-NO, PROJECT-DESCRIPTION, PROJECT-:.\IAKAGER-XO)
PART-PROJECT' (PART-NO, PROJECT-XO, QUANTITY-COl\IMITTED).

Using the entity-relationship diagram in Figure 11, the following entity and
relationship relations can be easily derived:

entity PART" (PART-NO, PART-DESCRIPTION, QUANTITY-ON-HAND)
relations PROJECT" (PROJECT-NO, PROJECT-DESCRIPTION)

EMPLOYEE "(EMPLOYEE-NO)

relationship PART-PROJECT" (PART/PART-NO, PROJECT/PROJECT-NO,
relations QUANTITY-COMMITTED)

PROJECT-MANAGER" (PROJECT/PROJECT-NO,
MAN AGER/EMPLOYEE-NO).

The role names of the entities in relationships (such as MANAGER) are indicated.
The entity relation names associated with the PKs of entities in relationships and
the value set names have been omitted.

Note that in the example above, entity jrelationship relations are similar to the
3NF relations. In the 3NF approach, PROJECT-MANAGER-NO is included in
the relation PROJECT' since PROJECT-MANAGER-NO is assumed to be
functionally dependent on PROJECT-NO. In the entity-relationship model,
PROJECT-MANAGER-NO (i.e. E~IPLOYEE-NO of a project manager) is
included in a relationship relation PROJECT-MANAGER since EMPLOYEE-NO
is considered as an entity PK in this case.

Also note that in the 3NF approach, changes in functional dependencies of data
may cause some relations not to be in 3NF. For example, if 'we make a new as
sumption that one project may have more than one manager, the relation
PROJECT' is no longer a 3NF relation and has to be split into two relations as
PROJECT" and PROJECT-MANAGER". Using the entity-relationship model,
no such change is necessary. Therefore, we may say that by using the entity
relation~hip model we can arrange data in a form similar to 3NF relations but with
clear semantic meaning.

It is interesting to note that the decomposition (or transformation) approach
described above for normalization of relations may be viewed as a bottom-up
approach in database design.4 It starts with arbitrary relations (level 3 in Figure 1)
and then uses some semantic information (functional dependencies of data) to
transform them into 3NF relations (level 2 in Figure 1). The entity-relationship
model adopts a top-down approach, utilizing the semantic information to organize
data in entity jrelationship relations.

4.2 The Network Model

4.2.1 Semantics of the Data-Structure Diagram. One of the best ways to explain
the network model is by use of the data-structure diagram [3]. Figure 16(a) illus
trates a data-structure diagram. Each rectangular box represents a record type.

• Although the decomposition approach was emphasized in the relational model literature, it is
a procedure to obtain 3NF and may not be an intrinsic property of 3NF.

www.manaraa.com

(a) (bJ

DEPARTMENT DEPARTMENT

EMPLOYEE

EMPLOYEE

Fig. 16. Relationship DEPART
MENT-EMPLOYEE

(a) data structure diagram
(b) entity-relationship diagram

228

(a) (b)

EMPLOYEE PROJECT EMPLOYEE

PROJECT

Fig. 17. Relationship PROJECT-WORKER
(a) data structure diagram

(b) entity-relationship diagram

The arrow represents a data-structure-set in which the DEPARTMENT record
is the owner-record, and one owner-record may own n (n = 0, 1, 2, ...) member
records. Figure 16(b) illustrates the corresponding entity-relationship diagram.
One might conclude that the arro' in the data-structure diagram represents a
relationship between entities in two entity sets. This is not always true. Figures
17(0.) and 17(b) are the data-structure diagram and the entity-relationship diagram
expressing the relationship PROJECT-WORKER between two entity types
EMPLOYEE and PROJECT. We can see in Figure 17(0.) that the relationship
PROJECT-WORKER becomes another record type and that the arrows no
longer represent relationships between entities. What are the real meanings of the
arrows in data-structure diagrams? The answer is that an arrow represents an l:n
relationship between two record (not entity) types and also implies the existence
of an access path from the owner record to the member records. The data-structure
diagram is a representation of the organization of records (level 4 in Figure 1)
and is not an exact representation of entities and relationships.

4.2.2 Deriving the Data-Structure Diagram. Under what conditions does an
arrow in a data-structure diagram correspond to a relationship of entities? A close
comparison of the data-structure diagrams with the corresponding entity-relation
ship diagrams reveals the following rules:

1. For l:n binary relationships an arrow is used to represent the relationship
(see Figure 16(0.».

2. For m:n binary relationships a "relationship record" type is created to repre
sent the relationship and arrows are drawn from the "entity record" type to the
"relationship record" type (see Figure 17 (a».

3. For k-ary (k ~ 3) relationships, the same rule as (2) applies (i.e. creating a
"relationship record" type).

Since DBTG [7J does not allow a data-structure-set to be defined on a single
record type (i.e. Figure 18 is not allowed although it has been implemented in
[13J), a "relationship record" is needed to implement such relationships (see

www.manaraa.com

229

(0) (b)

PERSON PERSON PERSON

Fig. 18. Data-structure-set de
fined on the same record type

HUSBAND WIFE

MARRIAGE

Fig. 19. Relationship MARRIAGE (a) data struc
ture diagram (b) entity-relationship diagram

Figure 19(a» [20]. The corresponding entity-relationship diagram is shown in
Figure 19(b).

It is clear now that arrows in a data-structure diagram do not always represent
relationships of entities. Even in the case that an arrow represents a l:n relation
ship, the arrow only represents a unidirectional relationship [2OJ (although it is
possible to find the owner-record from a member-record). In the entity-relationship
model, both directions of the relationship are represented (the roles of both en
tities are specified). Besides the semantic ambiguity in its arrows, the network
model is awkward in handling changes in semantics. For example, if the relationship
between DEPARTMENT and E:MPLOYEE changes from a l:n mapping to an
m: n mapping (i.e. one employee may belong to several departments), we must
create a relationship record DEPART~IENT-EMPLOYEE in the network model.

DEPARTMENT

EMPLOYEE ~----......... ~ PROJECT

DEPENDENT

SUPPLIER

PROJECT
PART

PART

COMPONENT

Fig. 20. The data structure diagram derived from the entity-relationship diagram in Fig. 11

www.manaraa.com

DEPT DEP EMP

230

PROJ

PROJ
MAGR

supp

PROJ
PART

PART

COMP

Fig. 21. The "disciplined" data structure diagram derived from the entity-relationship diagram
in Fig. 11

In the entity-relationship model, all kinds of mappings in relationships are handled
uniformly.

The entity-relationship model can be used as a tool in the structured design of
databases using the network model. The user first draws an entity-relationship
diagram (Figure 11). He may simply translate it into a data-structure diagram
(Figure 20). using the rules specified above. He may also follow a discipline that
every entity or relationship must be mapped onto a record (that is, "relationship
records" are created for all types of relationships no matter that they are l:n or
m:n mappings). Thus, in Figure 11, all one needs to do is to change the diamonds
to boxes and to add arrowheads on the appropriate lines. Using this approach
three more boxes-DEPARTMENT-EMPLOYEE, EMPLOYEE-DEPEND
ENT, and PROJECT-MANAGER-will be added to Figure 20 (see Figure 21).
The va.lidity constraints discussed in Sections 3.3-3.5 will also be useful.

4.3 The Entity Set Model

4.3.1 The Entity Set View. The basic element of the entity set model is the
entity. Entities have names (entity names) such as "Peter Jones", "blue", or
"22". Entity names having some properties in common are collected into an
entity-name-set, which is referenced by the entity-name-set-name such as "NAME",
"COLOR", and "QUANTITY".

An entity is represented by the entity-name-set-name/entity-name pair such as
NAME/Peter Jones, EMPLOYEE-~O/2566, and N0-0F-YEARS/20. An entity
is described by its association "ith other entities. Figure 22 illustrates the entity
set view of data. The "DEPART:\1ENT" of entity EMPLOYEE-NO/2566 is the
entity DEPARTMENT-NO/405. In other words, "DEPARTMENT" is the role
that the entity DEPART:\1EXT-XO/405 plays to describe the entity EM
PLOYEE-XO/2566. Similarly, the "NAME", "ALTERNATIVE-NAME", or
"AGE" of E:.vIPLOYEE-KO/2566 is "NAME/Peter Jones", "NAME/Sam Jones",
or "NO-OF -1"EARS/20", respectively. The description of the entity EMPLOYEE-

www.manaraa.com

231

NO/2566 is a collection of the related entities and their roles (the entities and
roles circled by the dotted line). An example of the entity description of "E~I
PLOYEE-KO/2566" (in its full-blown, unfactored form) is illustrated by the set
of role-name/entity-name-set-name/entity-name triplets shown in Figure 23. Con
ceptually, the entity set model differs from the entity-relationship model in the
following ways:

(1) In the entity set model, everything is treated as an entity. For example,
"COLOR/BLACK" and "NO-OF - YEARS/45" are entities. In the entity-relation
ship model. "blue" and "36" are usually treated as values. Note treating values as
entities may cause semantic problems. For example, in Figure 22, what is the
difference between "EMPLOYEE-NO/2566", "NAME/Peter Jones", and
"NAME/Sam Jones"? Do they represent different entities?

(2) Only binary relationships are used in the entity set model,5 while n-ary
relationships may be used in the entity-relationship model.

r- --,

NO-OF-YEARSI20

NAME/PETER JONES

NAME/SAM JONES

----------------~

NAME/ACCOUNTING

Fig. 22. The entity-set view

6 In DIAM II [24], n-ary relationships may be treated lIS special cases of i·lentifiers.

www.manaraa.com

232

THE ENTITY-
RELATIONSHIP ATTRIBUTE VALUE SET VALUE
MODEL TERMINOLOGY OR ROLE

"ENTITY-NAME-
~~gEtNi~~~~~JLOGY "ROLE-NAME" SET-NAME" "ENTITY-NAME"

IDENTIFIER EMPLOYEE-NO 2566

NAME NAME PETER JONES

NAME NAME SAM JONES

AGE NO-OF-YEARS 25

DEPARTMENT DEPARTMENT-NO 405

Fig. 23. An "entity description" in the entity-set model

4.3.2 Deriving the Entity Set View. One of the main difficulties in under
standing the entity set model is due to its worlp. view (i.e. identifying values with
entities). The entity-relationship model proposed in this paper is useful in under
standing and deriving the entity set view of data. Consider Figures 2 and 6. In
Figure 2, entities are represented by e;'s (which exist in our minds or are pointed
at with fingers). In Figure 6, entities are represented by values. The entity set
model works both at levelland level 2, but we shall explain its view at level 2
(Figure 6). The entity set model treats all value sets such as NO-0F-YEARS
as "entity-name-sets" and all values as "entity-names." The attributes become
role names in the entity set model. For binary relationships, the translation is
simple: the role of an entity in a relationship (for example, the role of "DEPART
MENT" in the relationship DEPARTMENT-EMPLOYEE) becomes the role
name of the entity in describing the other entity in the relationship (see Figure
22). For n-ary (n > 2) relationships, we must create artificial entities for relation
ships in order to handle them in a binary relationship world.

ACKNOWLEDGMENTS

The author wishes to express his thanks to George Mealy, Stuart Madnick, Murray
Edelberg, Susan Brewer, Stephen Todd, and the referees for their valuable sug-

www.manaraa.com

233

gestions (Figure 21 was suggested by one of the referees). This paper was motivated
by a series of discussions with Charles Bachman. The author is also indebted to
E.F. Codd and M.E. Senko for their valuable comments and discussions in revising
this paper.

REFERENCES

1. ABRIAL, J.R. Data semantics. In Data Base Management, J.W. Klimbie and K.L. Koffeman,
Eds., North-Holland Pub. Co., Amsterdam, 1974, pp. 1-60.

2. BACHMAN, C.W. Software for random access processing. Datamation 11 (April 1965), 36-41.
3. BACHMAN, C.W. Data structure diagrams. Dal.a Base 1, 2 (Summer 1969),4-10.
4. BACHMAN, C.W. Trends in database management-1975. Proc., AFIPS 1975 NCC, Vol. 44,

AFIPS Press, Montvale, N.J., pp. 569-576.
5. BIRKHOFF, G., AND BARTEE, T.C. Modern Applied Algebra. McGraw-Hill, New York, 1970.
6. CHAMBERLIN, D.D., AND RAYMOND, F.B. SEQUEL: A structured English query language.

Proc. ACM-SIGMOD 1974, Workshop, Ann Arbor, Michigan, May, 1974.
7. CODASYL. Data base task group report. ACM, New York, 1971.
8. CODD, E.F. A relational model of data for large shared data banks. Comm. ACM 19,6 (June

1970), 377-387.
9. CODD, E.F. Normalized data base structure: A brief tutorial. Proc. ACM-SIGFIDET 1971,

Workshop, San Diego, Calif., Nov. 1971, pp. 1-18.
10. CODD, E.F. A data base sublanguage founded on the relational calculus. Proc. ACM-SIG

FIDET 1971, Workshop, San Diego, Calif., Nov. 1971, pp. 35-68.
11. CODD, E.F. Recent investigations in relational data base systems. Proc. IFIP Congress

1974, North-Holland Pub. Co., Amsterdam, pp. 1017-1021.
12. DEHENEFFE, C., HENNEBERT, H., AND PAULUS, W. Relational model for data base. Proc.

IFIP Congress 1974, North-Holland Pub. Co., Amsterdam, pp. 1022-1025.
13. DODD, G.G. APL-a language for associate data handling in PL/I. Proc. AFIPS 1966

FJCC, Vol. 29, Spartan Books, New York, pp. 677-684.
14. ESWARAN, K.P., AND CHAMBERLIN, D.D. Functional specifications of a subsystem for data

base integrity. Proc. Very Large Data Base Conf., Framingham, Mass., Sept. 1975, pp.
48-68.

15. HAINAUT, J.L., AND LECHARLIER, B. An extensible semantic model of data base and its
data language. Proc. IFIP Congress 1974, North-Holland Pub. Co., Amsterdam, pp. 1026-
1030. .

16. HAMMER, M.M., AND McLEOD, D.J. Semantic integrity in a relation data base system. Proc.
Very Large Data Base Conf., Framingham, Mass., Sept. 1975, pp. 2547.

17. LINDGREEN, P. Basic operations on information as a basis for data base design. Proc. IFIP
Congress 1974, North-Holland Pub. Co., Amsterdam, pp. 993-997.

18. MEALY, G.H. Another look at data base. Proc. AFIPS 1967 FJCC, Vol. 31, AFIPS Press,
Montvale, N.J., pp. 525-534.

19. NUSSEN, G.M. Data structuring in the DDL and the relational model. In Data Base Manage
ment, J.W. Klimbie and K.L. Koffeman, Eds., North-Holland Pub. Co., Amsterdam, 1974,
pp. 363-379.

20. OLLE, T.W. Current and future trends in data base management systems. Proc. IFIP Con
gress 1974, North-Holland Pub. Co., Amsterdam, pp. 998-1006.

21. RoussoPouLos, N., AND MYLOPOULos, J. Using semantic networks for data base manage
ment. Proc. Very Large Data Base Conf., Framingham, Mass., Sept. 1975, pp. 144-172.

22. RUSTIN, R. (Ed.). Proc. ACM-SOGMOD 1974-debate on data models. Ann Arbor, Mich.,
May 1974.

23. SCHMID, H.A., AND SWENSON, J.R. On the semantics of the relational model. Proc. ACM
SIGMOD 1975, Conference, San Jose, Calif., May 1975, pp. 211-233.

24. SENKO, M.E. Data description language in the concept of multilevel structured description:
DIAM II with FORAL. In Data Base DeSCription, B.C.M. Dougue, and G.M. Nijssen, Eds.,
North-Holland Pub. Co., Amsterdam, pp. 239-258.

www.manaraa.com

234

25. SENKO, l\·1.E., ALTMAN, E.B., ASTRAHAN, l\1.M., AND FEHDER, P.L. Data structures and
accessing in data-base systems. IBM Syst. J. 12, 1 (1973),30-93.

26. SIBLEY, E.H. On the equivalence of data base systems. Proc. ACM-SIGMOD 1974 debate
on data models, Ann Arbor, Mich., May 1974, pp. 43-76.

27. STEEL, T.B. Data base standardization-a status report. Proc. ACM-SIGMOD 1975, Con
ference, San Jose, Calif., May 1975, pp. 65-78.

28. STONEBRAKER, M. Implementation of integrity constraints and views by query modification.
Proc. ACM-SIGMOD 1975, Conference, San Jose, Calif., May 1975, pp. 65-78.

29. SUNDGRE~, B. Conceptual foundation of the infological approach to data bases. In Data
Bast Management, J.W. Klimbie and K.L. Kofi'eman, Eds., North-Holland Pub. Co., Amster
dam, 1974, pp. 61-95.

30. TAYLOR, R.W. Observations on the attributes of database sets. In Data BaBe Description,
B.C.M. Dougue and G.M. Nijssen, Eds., North-Holland Pub. Co., Amsterdam, pp. 73-84.

31. TSICHRITZIS, D. A network framework for relation implementation. In Data Base Description,
B.C.M. Douge and G.M. Nijssen, Eds., North-Holland Pub. Co., Amsterdam, pp. 269-282.

www.manaraa.com

Ole-Johan Dahl

Ole-Johan Dahl, Kristen Nygaard
Class and Subclass Declarations

Simulation Programming Languages, ed. By J.N. Buxton,
North Holland, Amsterdam, 1967

pp. 158-174

www.manaraa.com

CLASS AND SUBCLASS DECLARATIONS

OLE-JOHAN DAHL and KRISTEN NYGAARD
Nonvegian Computing Center, Oslo, N01'7,{'aJ

1. INTRODUCTION

A central idea of some programming languages [28.57.58] is to
provide protection for the user against (inadvertantly) making
meaningless data references. The effects of such errors are im
plementation dependent and can not be determined by reasoning
within the programming language itself. This makes debugging dif
ficult and impractical.

Security in this sense is particularly important in a list process
ing environment, where data are dynamically allocated and de-al
located, and the user has explicit access to data addresses (point'
ers. reference v~lues, element ,-alues). To provide security it is
necessary to have an automatic de-allocation mechanism (refer
ence count, garbage collection). It is convenient to restrict oper
ations on pointers to storage and retrieval. New pOinter yalues are
generated by allocation of storage space, pointing to the allocated
space. The problem remains of correct interpretation of data ref
erenced relative to user specified pointers, or checking the validity
of assumptions inherent in such referencing. E.g. to speak of
"A of X" is meaningful, only if there is an A among the data pointed
to by X.

The record concept proposed by Hoare and Wirth [58] provides
full security combined with good runtime efficiency. Most of the
necessary checking can be performed at compile time. There is,
however, a considerable expense in flexibility. The values of ref
erence variables and procedures must be restricted by declaration
to range over records belonging to a stated class. This is highly
impractical.

The connection mechanism of SIMULA combi~es full security
with greater flexibility at a certain expense in convenience and run
time efficiency. The user is forced, by the syntax of the connection
statement, to determine at run time the class of a referenced data
structure (process) before access to the data is possible.

The subclass concept of Hoare [59] is an attempt to oyercome
the difficulties mentioned above. and to facilitate the manipulation
of data structures, which are partly similar, partly distinct. This
paper presents another approach to subclasses, and some applica
tions of this approach.

www.manaraa.com

238

2. CLASSES

The class concept introduced is a remodelling of the record
class concept proposed by Hoare. The notation is an extension of
the ALGOL 60 syntax. A prefix notation is introduced to define
subclasses organized in a hierarchical tree structure. The mem
bers of a class are called objects. Objects belonging to the same
class have similar data structures. The members of a subclass
are compound objects, which have a prefix part and a main part.
The prefix part of a compound object has a structure similar to ob
jects belonging to some higher level class. It can itself be a com
pound object.

The figure below indicates the structure of a class hierarchy
and of the corresponding objects. A capital letter denotes a class.
The corresponding lower case letter denotes the data comprising
the main part of an object belonging to that class.

Classes Objects

A A B C D E

/\ 85j ffi B E a a

/\
C D h b IJ

I C l_d I

L--J

B. C. D. E are subclasses of A; C and Dare sublasses of B.

2.1. Syntax

(class id.) :: = (identifier)
(prefix) :: = (class id.)
(class body):: = (statement)
(main part):: = class (class id.) (formal parameter part);

(specification part) (class body)
(class declaration):: = (main part) (prefix) (main part)

2.2. Semantics
An object is an instance of a class declaration. Different in

stances of the same declaration are said to belong to class C, where
C is the class identifier. If the class body does not take the form of
an unlabelled block, it acts as if enclosed in an impliCit block. The
parameters and the quantities declared local to the outermost block

www.manaraa.com

239

of the class body are called the attributes of an object. The attri
butes can be referenced locally from within the class body, or non
locally by a mechanism called remote acessing (5).

The parameters are transmitted by value. One possible use of
the statements of the class body may be to initialize attribute val
ues.

A prefixed class declaration represents the result of concaten
ating the declaration referenced by the prefix and the main part.
The concatenation is recursively defined by the following rules.

1) The formal parameter lists of the former and the latter are
concatenated to form one parameter list.

2) The specification parts are juxtaposed.
3) A combined class body is formed, which is a block, whose

block head contains the attribute declarations of the prefix body and
the main body. The block tail contains the statements of the prefix
body followed by those of the main body.

The attributes of the main part are not accessible from within
the prefix body, except by remote accessing. The attributes of the
prefix are acessible as ordinary local quantities from within the
body of the main part.

The object class represented by a prefixed class declaration is
a subclass of the class denoted by the prefix. Subclasses can be
nested to any depth by using prefixed class identifiers as prefixes
to other class declarations.

Let AO be any class. If AS is prefixed, we will denote this pre
fix by AI' The prefix of Al if any) will be denoted by A2 etc. The
sequence

will be called the "prefix sequence" of AO' It follows from the syn
tax that if Ai and Aj both have Ak as prefix, they have identical pre
fix sequences.

It will be required that all prefix sequences are finite. (This ex
cludes multiple occurrence of any class Ai in a prefix sequence.)
Let

be the prefix sequence of AO' We shall say that the class Ai is
"included in Aj" if 0 ~ i ~ j ~ n.

www.manaraa.com

240

3. OBJECT REFERENCES

Reference values in the sense of [59] are introduced, in a slight
ly modified form.

3.1. Reference types

3.1.1. Syntax

(type) :: = (ALGOL type) I ref i ref (qualification)
(qualification) :: = (class id.»

3.1.2. Semantics
Associated with each object is a unique value of type ref, which

is said to reference or point to the object. A reference value may,
by qualifying a declaration or specification by a class identifier, be
required to refer to objects belonging to either this class or any of
its subclasses. In addition the value of any item of type reference
is restricted to objects belonging to classes whose declarations
are statically visible from the declaration or speCification of the
item.

The reference value none is a permissible value for any refer
ence item, regardless of its qualification.

3.2. Reference Expressions

3.2.1. Syntax

(simple ref. expr.) :: = none! (variable) I (function designator) I
(object designator) I (local reference)

(ref. expr.) :: = (simple ref. expr.) I !! (Boolean expr.) then
(simple ref. expr.) else (ref. expr.)

(object designator):: = (class id.) (actual parameter part)
(local reference):: = this ~class id.)

3.2.2. Semantics
A reference expression is a rule for computing a reference

value. Thereby reference is made to an object, except if the value
is none, which is a reference to "no object".

i) Qualification. A variable or function deSignator is qualified
according to its declaration or specification. An object designator
or local reference is qualified by the stated class identifier. The
expreSSion none is not qualified.

No qualification will be regarded as qualification by a universal
class, which includes all declared classes.

www.manaraa.com

241

ii) Object generation. As the result of evaluating an object de
signator an object of the stated class is generated. The class body
is executed. The value of the object designator is a reference to
the generated object. The life span of the object is limited by that
of its reference value.

iii) Local reference. A local reference "this C" is a meaningful
expression within the class body of the class C or of any subclass
of C. Its value is a reference to the current instance of the class
declaration (object).

Within a connection block (5.2) connecting an object of class C
or a subclass of C the expression "this C" is a reference to the
connected object.

The general rule is that a local reference refers to the object,
whose attributes are local to the smallest enclosing block, and
which belongs to a class included in the one specified. If there is
no such object, the expression is illegal.

4. REFERENCE OPERATIONS

4.1. Assignment

4 .1.1. Syntax

(reference assignment) :: = (variable): = (reference expr.) I
(variable): = (reference assign
ment)

4.1.2. Semantics
Let the left and right hand sides be qualified by CI and Cr, res

pectively, and let the value of the right hand side be a reference to
an object of class Cv. The legality and effect of the statement de
pends on the relations that hold between these classes.

Case 1. CI includes Cr: The statement is legal, and the assign
ment is carried out.

Case 2. Cl is a subclass of Cr: The statement is legal, and the
assignment is carried out if Cl includes Cv, or if the value is none.
If Cl does not include Cv, the effect of the statement is undefined
(cf. 6.1).

Case 3. Cl and Cr satisfy neither of the above relations: The
statement is illegal.

The following additional rule is considered: The statement is
legal only if the declaration of the left hand item (variable, array
or (type) procedure) is within the scope of the class identifier Cr
and all its subclasses. (The scope is in this case defined after hav
ing effected all concatenations implied by prefixes.)

www.manaraa.com

242

This rule would have the following consequences.
1) Accessible reference values are limited to pointers to objects,

whose attributes are accessible by remote referencing (5).
2) Classes represented by declarations local to different in

stances of the same block are kept separate.
3) Certain security problems are simplified.

4.2. Relations

4.2.1. Syntax

(relation):: = (ALGOL relation) 1

4.2.2. Semantics

(reference expr.) = (reference expr.) I
(reference expr.) =I:- (reference expr'> I
(reference expr.) is (class id.)

Two reference values are said to be equal if the point to the
same object, or if both are none. A relation "X is CIt is true if
the object referenced by X belongs to the class C or to any of its
subclasses.

4.3. F01' statements

4.3.1. Syntax

(for list element):: = (ALGOL for list element) i(reference expr.)!
(reference expr.) while (Boolean expr.)

4.3.2. Semantics
The extended for statement will facilitate the scanning of list

structures.

5. ATTRIBUTE REFERENCING

An attribute of an object is identified completely by the following
items of information:

1) the value of a (reference expr.) identifying an object,
2) a (class id.) specifying a class, which includes that of the

object, and
3) the (identifier) of an attribute declared for objects of the

stated class.
The class identification, item 2, is implicit at run time in a

reference value, however. in order to obtain runtime efficiency

www.manaraa.com

243

it is necessary that this information is available to the compiler.
For a local reference to an attribute, Le. a reference from

within the class body, items 1 and 2 are defined implicitly. Item 1
is a reference to the current instance (Le. object), and item 2 is
the class identifier of the class declaration.

Non-local (remote) referencing is either through remote identi
fiers or through connection. The former is an adaptation of the
technique proposed in [57], the latter corresponds to the connec
tion mechanism of SIMULA [28].

5.1. Remote Identifiers

5.1.1. Syntax

(remote identifier):: = (reference expr.). (identifier)
(identifier 1) :: = (identifier) I (remote identifier)

Replace the meta-variable (identifier) by (identifier 1) at appro
priate places of the ALGOL syntax.

5.1.2. Semantics
A remote identifier identifies an attribute of an individual object.

Item 2 above is defined by the qualification of the reference expres
sion. If the latter has the value none. the meaning of the remote
identifier is undefined (cf. 6.2).

5.2. Connection

5.2.1. Syntax

(connection block 1) :: = (statement)
(connection block 2) :: = (statement)
(connection clause):: = when (class id.) do (connection block 1)
(otherwise clause):: = (empty): otherwise (connection block 2)
(connection part):: = (connection clause) I

(connection part) (connection clause)
(connection statement):: = inspect (reference expr.) do

(connection block 2) I

5.2.2. Semantics

inspect (reference expr.)
(connection part) (otherwise clause)

The connection mechanism serves a double purpose:
1} To define item 1 above implicitly for attribute references

within connection blocks. The reference expression of a connection
statement is evaluated once and its yalue is stored. Within a con
nection block this value is said to reference the connected object.

www.manaraa.com

244

It can itself be accessed through a (local reference) (see section
3.2.2).

2) To discriminate on class membership at run time, thereby
defining item 2 implicitly for attribute references within alterna
tive connection blocks. Within a (connection block 1) item 2 is de
fined by the class identifier of the connection cianse. Within a
(connection block 2) it is defined by the qualifiaamon of the refer
ence expression of the connection statement.

Attributes of a connected object are thus immediately accessible
through their respective identifiers, as declared in the class de
claration corresponding to item 2. These identifiers act as if they
were declared Iocr.! to the connection block. The meaning of such
an identifier is undefined, if the corresponding (local reference)
has the value none. This can only happen within a (connection
block 2).

6. UNDEFINED CASES

In defining the semantics of a programming language the term
"undefined" is a convenient stratagem for postponing difficult de
cisions concerning special cases for which no obvious interpreta
tion exists. The most difficult ones are concerned with cases,
which can only be recognized by runtime checking.

One choice is to forbid offending special cases. The user must
arrange his program in such a way that they do not occur. if ne
cessary by explicit checking. For security the compiled program
must contain implicit checks, which to some extent will duplicate
the former. Failure of a check results in program termination and
an error message. The implicit checking thus represents a useful
debugging aid, and, subject to the implementor's foresight, it can
be turned off for a "bugfree" program (if such a thing exists).

Another choice is to define ad hoc, but "reasonable" standard
behaviours in difficult special cases. This can make the language
much more easy to use. The programmer need not test explicitly
for special cases, provided that the given ad hoc rule is appropriate
in each situation. However, the language then has no implicit de
bugging aid for locating unforeseen special cases (for which the
standard rules are not appropriate).

In the preceding sections the term undefined has been used three
times in connection with two essentially different special cases.

6.1. C01tflicting reje1'ence assignment
Section 4.1.2, case 2, Cl does not include Cv: The suggested

standard behaviour is to assign the yalue none.

www.manaraa.com

245

6.2. Non-existing attributes
Sections 5.1.2 and 5.2.2: The evaluation of an attribute refer

ence. whose item 1 is equal to none, should cause an error print
out and program termination. Notice that this trap will ultimately
catch most unforeseen instances of case 6.1.

7. EXAMPLES

The class and subclass concepts are intended to be general aids
to data structuring and referencing. However, certain widely used
classes might well be included as specialized features of the pro
gramming language.

As an example the classes defined below may serve to manipu
late circular lists of objects by standard procedures. The objects
of a list may have different data structures. The "element" and
"set" concepts of SIMULA will be available as special cases in a
slightly modified form.

class linkage; begin ref (linkage) suc, pred; end linkage;
linkage class link; begin

procedure out; !i suc '* none then
begin pred. suc: = suc: suc. pred: = pred;

suc: = pred: = none end out;
procedure into (L); ref (lis t) L;

begin if suc '* none then out;
suc: = L; pred: = suc. pred;
suc. pred: = pred. suc: = this linkage end into;

end link;
linkage class list;

begin suc: = pred: = this linkage end list;

Any object prefixed by "link" can go in and out of circular lists. If
X is a reference expression qualified by link or a subclass of link.
whose value is different from none. the statements

X. into (L) and X. out

are meaningful, where L is a reference to a list.
Examples of user defined subclasses are:

link class car (license number, weight);
integer license number: real weight; ... ;

car class truck (load); ref (list) load; ... ;
car class bus (capacity); integer capacity;

begin ref (person) ~ passenger [1 : capacity] ... end;
list class bridge; begin real load; ... end;

www.manaraa.com

246

Multiple list memberships may be implemented by means of auxil
iary objects.

link class element (X); ref X;;

A circular list of element objects is analogous to a "set" in SIMULA.
The declaration "set S" of SIMULA is imitated by "ref (list) S" fol
lowed by the statement tIS: = list".

The following are examples of procedures closely similar to the
corresponding ones of SIMULA.

procedure include (X. S); value X; ref X; ref (list) S;
if X '* none then element (X). into (S); -
ref (linkage) procedure suc (X): value X; ref (linkage) X;

suc: = if X '* none then X. suc else none;
ref (link) procedure first (S); ref (list) S;

first: = S. suc;
Boolean procedure empty (S); value S; ref (list) S;

empty: = S. suc = S;

Notice that for an empty list S "suc (S)" is equal to S, whereas
"first (S)" is equal to none. This is a result of rule 6.1 and the
fact that the two functions have different qualifications.

8. EXTENSIONS

8.1. Prefixed Blocks

8 .1.1. Syntax

(prefixed block):: = (block prefix) (main block)
(block prefix):: = (object designator)
(main block :: = (unlabelled block)
(block) :: = (ALGOL block) I (prefixed block)

(label):(prefixed block)

8.1.2. Semantics
A prefixed block is the result of concatenating (2.2) an instance

of a class declaration and the main block. The formal parameters
of the former are given initial values as specified by the actual pa
rameters of the block prefix. The latter are evaluated at entry into
the prefixed block.

8.2. Concatenation
The following extensions of the concepts of class body and con

catenation give increased flexibility.

www.manaraa.com

247

8.2.1. Syntax

(class body):: = (statement) I (split body)
(split body):: = (block head);(part 1) inner; (part 2)
(part 1) :: = (empty) I (statement); (part 1)
(part 2):: = (compound tail)

8.2.2. Semantics
If the class body of a prefix is a split body, concatenation is de

fined as follows: the compound tail of the resulting class body con
sists of part 1 of the prefix body, followed by the statements of the
main body, followed by part 2 of the prefix body. If the main body
is a split body, the result of the concatenation is itself a split body.

For an object, whose class body is a split body, the symbol
inner represents a dummy statement. A class body must not be a
prefixed block.

8.3. Vi1'tual quantities
The parameters to a class declaration are called by value. Call

by name is difficult to implement with full security and good effi
ciency. The main difficulty is concerned with the definition of the
dynamic scope of the actual parameter corresponding to the formal
name parameter. It is felt that the cost of an unrestricted call by
name mechanism would in general be out of proportion to its gain.

The virtual quantities described below represent another ap
proach to call by name in class declarations. The mechanism pro
vides access at one prefix level of the prefix sequence of an object
to quantities declared local to the object at lower prefix levels.

8.3.1. Syntax

(class declaration):: = (prefix)(class declarator)(class id.)
(formal parameter part);
(specification part)(virtual part)
(class body)

(virtual part):: = (empty) !virtual: (specification part)

8.3.2. Semantics
The identifiers of a (virtual part) should not otherwise occur in

the heading or in the block head of the class body. Let AI, ... , An
be the prefix sequence of AO and let X be an identifier occurring in
the (virtual part) of Ai' If X identifies a parameter of Aj or a quan
tity declared local to the body of A·, j < i, then for an object of
class AO identity is established between the virtual quantity X and
the quantity X local to Aj~

www.manaraa.com

248

If there is no Aj' j < i, for which X is local, a reference to the
virtual quantity X of the object constitutes a run time error (in an
alogy with 6.2).

8.3.3. Example

class A; virtual: real X, Y,Z; . .. ;
A class B(X, Y); real X, Y; . .. ;
A class C(y, Z); real Y,Z; ... ;
A class D (Z, X); real Z,X; . .. ;
ref (A) Q; -

The attribute reference Q. X is meaningful if Q refers to an object
of class B or D. Notice that all three subclasses contain objects
with only two attributes.

8.4. Example
As an example on the use of the extended class concept we shall

define some aspects of the SIMULA concepts "process", "main
program". and "SIMULA block".

Quasi-parallel sequencing is defined in terms of three basic
procedures, which operate on a system variable SV. SV is an im
plied and hidden attribute of every object. and may informally be
characterized as a variable of "type label". Its value is either null
or a program point [5]. SV of a class object initially contains t~
"exit" information which refers back to the object designator. SV
of a prefixed block has the initial value null. The three basic pro
cedures are:

1) detach. The value of SVis recorded, and a new value, called
a reactivation point, is assigned referring to the next statement in
sequence. Control proceeds to the point referenced by the old value
of SF. The effect is undefined if the latter is null.

2) resume(X); ref X. A new value is assigned to SV referring to
the next statement in sequence. Control proceeds to the point ref
erenced by SV of the object X. The effect is undefined if X. SV is
null or if X is none. null is assigned to X. SV.

3) goto(X); ref X. Control proceeds to the point referenced by
SVof the object X. The effect is undefined if X.SV is null or if X
is none. null is assigned to X. SV.

class SIMULA; begin
-ref (process) current;

class process; begin ref(process)nextev; real evtime;
detach; inner; current: = nextev; goto(nextev)end;
procedure schedule(X, T); ref(process)X; real T;

begin X. evtime: = T; u_u_n __ n end;

www.manaraa.com

249

process class main program; begin
-r:: resume(this SIMULA); go to L end;

schedule(main program, O)end SIMUL~

The "sequencing set" of SIMULA is here represented by a sim
ple chain of processes, starting at "current", and linked by the at
tribute "nextev". The "schedule" procedure will insert the refer
enced process at the correct position in the chain, according to the
assigned time value. The details have been omitted here.

The "main program" object is used to represent the SIMULA ob
ject within its own sequencing set.

Most of the sequencing mechanisms of SIMULA can. except for
the special syntax. be declared as procedures local to the SIMULA
class body.
Examples:

procedure passivate; begin current: = current. nextev;
-- resume(current)end;

procedure activate(X); ref X; inspect X when process do
if nextev = none then
begin nextev: = current; evtime: = current. evtime;

current: = this process; resume(current)end;
procedure hold(T); real T; inspect current do

begin current: =nextev; schedule(this process. evtime+T);
resume(current)end;

Notice that the construction "process class" can be regarded as a
definition of the symbol "activity" of SIMULA. This definition is
not entirely satisfactory, because one would like to apply the pre
fix mechanism to the activity declarations themselves.

9. CONCLUSION

The authors have for some time been working on a new version
of the SIMULA language. tentatively named SIMULA 67. A compiler
for this language is now being programmed and others are planned.
The first compiler should be working by the end of this year.

As a part of this work the class concept and the prefix mecha
nism have been developed and explored. The original purpose was
to create classes and subclasses of data structures and processes.
Another useful possibility is to use the class concept to protect
whole families of data. procedures. and subordinate classes. Such
families can be called in by prefixes. Thereby language "dialects"
oriented towards special problem areas can be defined in a con
venient way. The administrative problems in making user defined
classes generally available are important and should not be over
looked.

www.manaraa.com

250

Some areas of application of the class concept have been illu
strated in the preceding sections. others have not yet been explored.
An interesting area is input/output. In ALGOL the procedure is the
only means for handling I/O. However. a procedure instance is gen
erated by the call. and does not survive this call. Continued exis
tence. and existence in parallel versions is wanted for buffers and
data defining external layout, etc. System classes. which include
the declarations of local I/O procedures. may prove useful.

The SIMULA 67 will be frozen in June this year. and the current
plan is to include the class and reference mechanisms described in
sections 2-6. Class prefixes should be permitted for activity decla
rations. The "element" and "set" concepts of SIMULA will be re
placed by appropriate system defined classes. Additional standard
classes may be included.

SIMULA is a true extension of ALGOL 60. This property will
very probably be preserved in SIMULA 67.

DISCUSSION

Garlcick:

This language has been designed with a very specific line of
thought just as GPL has been designed with a very specific line.
Dahl's line is different from mine. His overriding consideration
has been security. My effort has always been security but not to
the same degree. I think that Dahl has gone too far in this respect
and thereby lost quite a number of facilities. especially a thing like
the "call by name". He can of course use a reference to a variable;
this corresponds very closely to the FORTRAN type of "call by ad
dress". as opposed to the call by name in ALGOL and so for in
stance he can not use Jensens device. As you know in GPL, I use
pOinters. A pointer is not the same as a reference; it is a more
general concept. So I think the loss of facilities here is a little too
much to take for the sake of security.

The "virtuals" seem to be very closely corresponding to the
"externals" in FORTRAN or assembly languages. But you see first
of all you can only access things which belong to the same complex
structure and secondly it seems to me that it is pretty hard to get
type declarations for these procedures. You have to have declared
the type of the value of the procedure and the type of parameters. In
the example given the procedures seem to be parameterless and
they do not deliver any value for the function. So I would like to
know how Dahl would take care of that.

www.manaraa.com

251

Dahl:

We think of SIMULA as an extension of ALGOL 60. We therefore
provide exactly the same kind of specification for a virtual quantity
as you would do for a formal parameter. You can write procedllre
P; real procedure Q; array A; and so forth.

I would much have preferred to specify the formal parameters
of P within the virtual speCification of P itself. Then, of course,
alternative actual declarations in subclasses could have been sim
plified by omitting much of the procedure heading. This would have
made it possible to check at compile time the actual parameters of
a call for a virtual procedure. But in order to be consistent with
ALGOL 60, we decided not to do it in this way.

The virtual quantities are in many ways similar to ALGOL's
name parameters, but not quite as powerful. It turns out that there
is no analogy to Jensen's device. This, I feel, is a good thing, be
cause I hate to implement Jensen's device. It is awful.

If you specify a virtual real X, then you have the option to pro
vide an actual declaration real X in a subclass. But you cannot de
clare a real expression for X. So, if you specify a quantity which
looks like a variable, you can only provide an actual quantity which
is a variable. This concept seems more clean to me than the call
by name of ALGOL.

To begin with, the whole concept of virtual variables seemed to
be superfluous because there was nothing more to say about a vir
tual variable than what had already been said in the specification.
But there is: you can say whether or not it actually exists. A virtual
variable X takes no space in the data record of an object if there is
no actual declaration of X at any subclass level of the object.
Therefore you can use the device for saving space, or for increas
ing the flexibility in attribute referencing without wasting space. If
you access any virtual quantity out of turn, the implementation can
catch you and give a run time error message. It is a problem sim
ilar to the "null" problem.

St1"achey:

Supposing you had classes C and D, could you then define pro
cedures P in both and if so, if you defined one in C and one in D,
both being called P, which one would win? Do the scopes go the re
verse way from the ordinary scopes or do they go the same way?

Dahl:

Thank you for reminding me of the problem which exists here.
The concatenation rule states that declarations given at different

www.manaraa.com

252

prefix levels are brought together into a single block head. Name
conflicts in a concatenated block head are regarded as errors of
the same kind as redeclarations in an ordinary ALGOL block head.
However, if there is a "name conflict" between a declared quantity
and a virtual one, identity is established between the two. if th~
declaration and specification "match".

Strachey:

The other thing I was going to ask about is whether you have
thought about the question of achieving security, not by making it
impossible to refer to any thing which has gone away but by making
it impossible to cause anything which is referred to, to go away.
That is to say, by keeping an account of the number of pointers or
references to each record, which is one of the methods of garbage
collection and only letting it go away when this count reaches zero.
The curious thing is this is generally faster than garbage collection.

Dahl:

We have made some experiments on that recently which suggest
that it may not be faster.

Strachey:

Anyway, have you thought of this as an alternative method for
providing security?

Dahl:

Evidently an actual parameter called by name is represented at
run-time by a pointer of some kind, and you could achieve security
by instructing the garbage collector to follow such pOinters in addi
tion to stored reference values. But then the price you pay for the
call by name is much higher than for instance in ALGOL, where
data referenced by any parameter has to be retained for other rea
sons. In my view, a call by name mechanism for classes would be
a convenient device which would invite a programmer to entirely
misuse the computer - by writing programs where no data can ever
be de-allocated and without realizing it.

Petrone:

My first question was covered by Strachey but I now have another
question which has arisen from his question. I am asking you wheth
er the call by name mechanism was already present in the old
SIMULA in the array case. And did you use it in garbage collection
on arrays?

www.manaraa.com

253

Dahl:

That is quite correct. There is a pOinter from the object to the
array. and the garbage collector will follow it. The reason why we
did that is that an array is usually a big thing. which it is reason
able to regard as a separate object.

It is not reasonable to give a small thing like a real variable an
independent existence. because that may cause very severe frag
mentation of the store. Fragmentation is a disaster if you do not
have a compacting scheme ~ and if you have one the fragmentation
will tend to increase the time for each garbage collection and also
the frequency of calling for it.

Peb'one:

Your concatenation mechanism expresses the possibility of gen
erating families of activity declarations - I am speaking now in
terms of your old SIMULA - and the virtual mechanism seems to
be a restricted call by name of quantities declared within such a
family. Maybe it would be better to restrict the call by name to
within an activity block, so that an activity block is equivalent to
an ALGOL program with the full call by name mechanism available
for procedures.

Dahl;

STh'1ULA in new and old versions has the complete call by name
mechanism for parameters to procedures. You could also have
name parameters to classes at no extra cost if you restricted any
actual parameter called by name to be computable within the block
enclosing the referenced class declaration. That is, it must only
reference quantities which are local to that block or to outer blocks.
But this is a rather unpleasant restriction considering that an ac
tual parameter may be part of a generating expression occurring
deep down in a block hierarchy.

www.manaraa.com

Tom DeMarco

Structure Analysis and System Specification

Yourdon, New York 1978
pp. 1-17 and 37-44

www.manaraa.com

STRUCTURED ANALYSIS

AND

SYSTEM SPECIFICATION

by

Tom DeMarco

Foreword by

P.l. Plauger

YOURIDN inc.
1133 Avenue of the Americas
New York, New York 10036

www.manaraa.com

First Printing, March 1978

Second Printing, June 1978

Revised, December 1978

Copyright 0 1978, 1979 by YOUR.IDN inc., New York, N.Y. All rights
reserved. Printed in the United States of America. No part of this
publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical,
photocopying, record, or otherwise, without the prior written permis
sion of the publisher. Library of Congress Catalog Cord Number
78-51285.

ISBN 978-3-540-42290-7 ISBN 978-3-642-48354-7 (eBook)
DOI 10.1007/978-3-642-48354-7

www.manaraa.com

259

CONTENTS

PART 1: BASIC CONCEPTS

1. The Meaning of Structured Analysis

1.1 What is analysis?
1.2 Problems of analysis
l.3 The user-analyst relationship
1.4 What is Structured Analysis?

2. Conduct of the analysis phase

2.1 The classical project life cycle
2.2 The modern life cycle
2.3 The effect of Structured Analysis on the life cycle
2.4 Procedures of Structured Analysis
2.5 Characteristics of the Structured Specification
2.6 Political effects of Structured Analysis
2.7 Questions and answers

3. The Tools of Structured Analysis

3.1 A sample situation
3.2 A Data Flow Diagram example
3.3 A Data Dictionary example
3.4 A Structured English example
3.5 A Decision Table example
3.6 A Decision Tree example

PART 2: FUNCTIONAL DECOMPOSITION

4. Data Flow Diagrams

4.1 What is a Data Flow Diagram?
4.2 A Data Flow Diagram by any other name
4.3 DFD characteristics - inversion of viewpoint

5. Data Flow Diagram conventions

5.1 Data Flow Diagram elements
5.2 Procedural annotation of DFD's
5.3 The Lump Law

PAGE

3

4
9

14
15

19

19
22
25
27
31
32
35

37

37
38
42
43
44
44

47

47
48
48

51

51
61
62

www.manaraa.com

260

6. Guidelines for drawing Data Flow Diagrams 63

6.1 Identifying net inputs and outputs 63
6.2 Filling in the DFD body 64
6.3 Labeling data flows 66
6.4 Labeling processes 66
6.5 Documenting the steady state 68
6.6 Omitting trivial error-handling details 68
6.7 Portraying data flow and not control flow 68
6.8 Starting over 69

7. Leveled Data Flow Diagrams 71

7.1 Top-down analysis - the concept of leveling 72
7.2 Elements of a leveled DFD set 75
7.3 Leveling conventions 77
7.4 Bottom-level considerations 83
7.5 Advantages of leveled Data Flow Diagrams 87
7.6 Answers to the leveled DFD Guessing Game 87

8. A Case Study in Structured Analysis 89

8.1 Background for the case study 89
8.2 Welcome to the project - context of analysis 90
8.3 The top level 91
8.4 Intermezzo: What's going on here? 94
8.5 The lower levels 96
8.6 Summary 104
8.7 Postscript 104

9. Evaluation and Refinement of Data Flow Diagrams 105

9.1 Tests for correctness 105
9.2 Tests for usefulness 112
9.3 Starting over 114

10. Data Flow Diagrams for System Specification 117

10.1 Toe man-machine dialogue 117
10.2 The integrated top-level approach 118
10.3 Problems and potential problems 120

PART 3: DATA DICTIONARY

11. The analysis phase Data Dictionary 125

11.1 The uses of Data Dictionary 126
11.2 Correlating Data Dictionary to the DFD's 127
11.3 Implementation considerations 127

www.manaraa.com

261

12. Definitions in the Data Dictionary

12.1 Characteristics of a definition
12.2 Definition conventions
12.3 Redundancy in DD definitions
12.4 Self-defining terms
12.5 Treatment of aliases
12.6 What's in a name?
12.7 Sample entries by class

13. Logical Data Structures

13.1 Data base considerations
13.2 Data Structure Diagrams (DSD's)
13.3 Uses of the Data Structure Diagram

14. Data Dictionary Implementation

14.1 Automated Data Dictionary
14.2 Manual Data Dictionary
14.3 Hybrid Data Dictionary
14.4 Librarian's role in Data Dictionary
14.5 Questions about Data Dictionary

PART 4: PROCESS SPECIFICATION

15. Description of Primitives

15.1 Specification goals
15.2 Classical specification writing methods
15.3 Alternative means of specification

16. Structured English

16.1 Definition of Structured English
16.2 An example
16.3 The logical constructs of Structured English
16.4 The vocabulary of Structured English
16.5 Structured English styles
16.6 The balance sheet on Structured English
16.7 Gaining user acceptance

17. Alternatives for Process Specification

17.1 When to use a Decision Table
17.2 Getting started
17.3 Deriving the condition matrix
17.4 Combining Decision Tables and Structured English
17.5 Selling Decision Tables to the user
17.6 Decision Trees

129

129
133
137
139
142
143
144

149

150
152
155

157

157
162
162
163
164

169

169
177
177

179

179
180
184
202
203
210
212

215

215
217
219
221
221
222

www.manaraa.com

262

17.7 A procedural note
17.8 Questions and answers

PART 5: SYSTEM MODELING

18. Use of System Models

18.1 Logical and physical DFD characteristics
18.2 Charter for Change
18.3 Deriving the Target Document

19. Building a Logical Model of the Current System

19.1 Use of expanded Data Flow Diagrams
19.2 Deriving logical file equivalents
19.3 Brute-force logical replacement
19.4 Logical DFD walkthroughs

20. Building a Logical Model of a Future System

20.1 The Domain of Change
20.2 Partitioning the Domain of Change
20.3 Testing the new logical specification

21. Physical Models

21.1 Establishing options
21.2 Adding configuration-dependent features
21.3 Selecting an option

22. Packaging the Structured Specification

22.1 Filling in deferred details
22.2 Presentation of key interfaces
22.3 A guide: to the Structured Specification
22.4 Supplementary and supporting material

PART 6: STRUCTURED ANALYSIS FOR A FUTURE SYSTEM

23. Looking Ahead to the Later Project Phases

23.1 Analyst roles during design and implementation
23.2 Bridging the gap from analysis to design
23.3 User roles during the later phases

24. Maintaining the Structured Specification

24.1 Goals for specification maintenance
24.2 The concept of the specification increment

225
225

229

230
231
232

233

235
238
254
256

257

258
260
263

265

265
269
269

273

273
275
275
278

283

283
284
285

287

287
289

www.manaraa.com

263

24.3 Specification maintenance procedures
24.4 The myth of Change Control

25. Transition into the Design Phase

25.1 Goals for design
25.2 Structured Design
25.3 Implementing Structured Designs

26. Acceptance Testing

26.1 Derivation of normal path tests
26.2 Derivation of exception path tests
26.3 Transient state tests
26.4 Performance tests
26.5 Special tests
26.6 Test packaging

27. Heuristics for Estimating

27.1 The empirically derived estimate
27.2 Empirical productivity data
27.3 Estimating rules

GLOSSARY

BIBLIOGRAPHY

INDEX

292
294

297

29-:'
302
323

325

326
328
330
330
331
331

333

334
335
336

341

347

349

www.manaraa.com

PART 1

BASIC CONCEPTS

www.manaraa.com

266

Figure 1

www.manaraa.com

267

1 THE MEANING OF STRUCTURED ANALYSIS

Let's get right to the point. This book is about Structured Analysis, and
Structured Analysis is primarily concerned with a new kind of Functional
Specification, the Structured Specification. Fig. 1 shows part of a Structured
Specification.

The example I have chosen is a system of sorts, but obviously not a com
puter system. It is, in fact, a manual assembly procedure. Procedures like the
one described in Fig. 1 are usually documented by a text narrative. Such
descriptions have many of the characteristics of the classical Functional
Specifications that we analysts have been producing for the last 20 years. (The
Functional Specification describes automated procedures - that is the main
difference between the two.) Take a look at a portion of the text that prompted
me to draw Fig. 1.

Assembly Instructions for KLEPPER Folding Boats

1. Layout hull in grass (or on carpet). Select a clean, level spot.

2. Take folded bow section (with red dot), lay it in grass, unfold
4 hinged gunwale boards. Kneel down, spread structure lightly
with left hand near bow, place righ t hand on pullplate at bottom
of hinged rib, and set up rib gently by pulling towards center
of boat. Deckbar has a tongue-like fitting underneath which
will connect with fitting on top of rib if you lift deckbar lightly,
guide tongue to rib, press down on deckbar near bow to lock
securely. Now lift whole bowsection using both arms wrap
around style (to keep gunwales from flopping down) and slide
into front of hull. Center seam of blue deck should rest on
top of deckbar.

3. Take folded stern section (blue dot, 4 "horseshoes" attached),
unfold 4 gunwales, set up rib by pulling on puflplate at bottom
of rib. Deckbar locks to top of rib .from the side by slipping a
snaplock over a tongue attached to top of rib

And so forth.

The differences are fairly evident: The text plunges immediately into the
details of the early assembly steps, while the structured variant tries to present
the big picture first, with the intention of working smoothly from abstract to
detailed. The Structured Specification is graphic and the text is not. The old
fashioned approach is one-dimensional (written narrative is always one
dimensional), and the structured variant is multidimensional. There are other
differences as well; we'll get to those later. My intention here is only to give
you an initial glimpse at a Structured Specification.

Now let's go back and define some terms.

www.manaraa.com

268

1.1 What is analysis?

Analysis is the study of a problem, prior to taking some action. [n the
specific domain of computer systems development, analysis refers to the study
of some business area or application, usually leading to the specification of a
new system. The action we're going to be taking later on is the implementation
of that system.

The most important product of systems analysis - of the analysis phase
of the life cycle - is the specification document. Different organizations have
different terms for this document: Functional Specification, External
Specification, Design Specification, Memo of Rationale, Requirements Docu
ment. [n order to avoid the slightly different connotations that these names
carry, [would like to introduce a new term here: the Target Document. The
Target Documen t establishes the goals for the rest of the project. It says what
the project will have to deliver in order to be considered a success. The Target
Document is the principal product of analysis.

Successful completion of the analysis phase involves all of the following:

1. selecting an optimal target

2. producing detailed documen tation of that target in such a
manner that subsequent implementation can be evaluated to
see whether or not the target has been attained

3. producing accurate predictions of the important parameters as
sociated with the target, including costs, benefits, schedules,
and performance characteristics

4. obtaining concurrence on each of the items above from each of
the affected parties

[n carrying out this work, the analyst undertakes an incredibly large and
diverse set of tasks. At the very minimum, analysts are responsible for: user
liaison, specification, cost-benefit study, feasibility analysis, and estimating.
We'll cover each of these in turn, but first an observation about some charac
teristics that are common to all the analyst's activities.

1.1.1 Characteristics afA lIa/ysis

Most of us corne to analysis by way of the implementation disciplines -
design, programming, and debugging. The reason for this is largely, historical.
[n the past, the business areas being automated were the simpler ones, and the
users were rather unsophisticated; it was more realistic to train computer people
to understand the application than to train users to understand EDP technology.
As we corne to automate more and more complex areas, and as our users (as a
result of prevalent computer training at the high school and college level) corne
to be more literate in automation technologies, this trend is reversing.

www.manaraa.com

269

But for the moment, I'm sure you'll agree with me that most computer
systems analysts are first of all computer people. That being the case, consider
this observation: Whatever analysis is, it certainly is not very similar to the
work of designing, programming, and debugging computer systems. Those
kinds of activities have the following characteristics:

• The work is reasonably straightforward. Software sciences are
relatively new and therefore not as highly specialized as more
developed fields like medicine and physics.

• The interpersonal relationships are not very complicated nor
are there very many of them. I consider the business of build
ing computer systems and getting them to run a rather friendly
activity, known for easy relationships.

• The work is very definite. A piece of code, for instance, is ei
ther right or wrong. When it's wrong, it lets you know in no
uncertain terms by kicking and screaming and holding its
breath, acting in obviously abnormal ways.

• The work is satisfying. A positive glow emanates from the
programmer who has just found and routed out a bug. A
friend of mine who is a doctor told me, after observing pro
grammers in the debugging phase of a project, that most of
them seemed "high as kites" much of the time. I think he
was talking about the obvious satisfaction programmers take in
their work.

The implementation disciplines are straightforward, friendly, definite, and
satisfying. Analysis is none of these things:

• It certainly isn't easy. Negotiating a complex Target Document
with a whole community of heterogeneous and conflicting
users and getting them all to agree is a gargantuan task. In the
largest systems for the most convoluted organizations, the di
plomatic skills that the analyst must bring to bear are compar
able to the skills of a Kissinger negotiating for peace in the
Middle East.

• The interpersonal relationships of analysis, particularly those
involving users, are complicated, sometimes even hostile.

• There is nothing definite about analysis. It is not even obvious
when the analysis phase is done. For want of better termina
tion criteria, the analysis phase is often considered to be over
when the time allocated for it is up!

• Largely because it is so indefinite, analysis is not very satisfy
ing. In the most complicated systems, there are so many
compromises to be made that no one is ever completely happy
with the result. Frequently, the various parties involved in the

www.manaraa.com

270

negotiation of a Target Document are so rankled by their own
concessions, they lose track of what a spectacular feat the
analyst has achieved by getting them to agree at all.

So analysis is frustrating, full of complex interpersonal relationships,
indefinite, and difficult. In a word, it is fascinating. Once you're hooked, the
old easy pleasures of system building are never again enough to satisfy you.

1.1.2 The User Liaison

During the 1960's, our business community saw a rash of conglomera
tions in which huge corporate monoliths swallowed up smaller companies and
tried to digest them. As part of this movement, many centralized computer
systems were installed with an aim toward gathering up the reins of manage
ment, and thus allowing the conglomerate's directors to run the whole show. If
you were an analyst on one of these large Management Information System
(MIS) projects, you got to see the user-analyst relationship at its very worst.
Users were dead set against their functions being conglomerated, and of course
that's just what the MIS systems were trying to do. The philosophy of the 60's
was that an adversary relationship between the analyst and the user could be
very productive, that analysts could go in, as the representatives of upper
management, and force the users to participate and comply.

Of course the record of such projects was absolutely dismal. I know of no
conglomerate that made significant gains in centralization through a large
Management Information System. The projects were often complete routs.
Many conglomerates are now spinning off their acquisitions and finding it rath
er simple to do so because so little true conglomeration was ever achieved.
Due to the experience of the 60's, the term Management Information System,
even today, is likely to provoke stifled giggles in a group of computer people.

The lesson of the 60's is that no system is going to succeed without the
active and willing participation of its users. Users have to be made aware of
how the system will work and how they will make use of it. They have to be
sold on the system. Their expertise in the business area must be made a key
ingredient to system development. They must be kept aware of progress, and
channels must be kept open for them to correct and tune system goals during
development. All of this is the responsibility of the analyst. He is the users'
teacher, translator, and advisor. This intermediary function is the most essen
tial of all the analyst's activities.

1.1.3 Specificatiol1

The analyst is the middleman between the user, who decides what has to
be done, and the develo.rment team, which does it. He bridges this gap with a
Target Document. The business of putting this document together and getting
it accepted by all parties is specification. Since the Target Document is the
analyst's principal output, specification is the most visible of his activities.

www.manaraa.com

271

If you visit the Royal Naval Museum at Greenwich, England, you will see
the results of some of the world's most successful specification efforts, the ad
miralty models. Before any ship of the line was constructed, a perfect scale
model had to be built and approved. The long hours of detail work were more
than repaid by the clear understandings that come from studying and handling
the models.

The success of the specification process depends on the product, the Tar
get Document in our case, being able to serve as a model of the new system.
To the extent that it helps you visualize the new system, the Target Document
is the system model.

1.1.4 Cost-Bell~fit Allalysis

The study of relative cost and benefits of potential systems is the feed
back mechanism used by an analyst to select an optimal target. While Struc
tured Analysis does not entail new methods for conduct of this study, it
nonetheless has an important effect. An accurate and meaningful system
model helps the user and the analyst perfect their vision of the new system and
refine their estimates of its costs and benefits.

1.1.5 Feasibility Ana{vsis

It is pointless to specify a system which defies successful implementation.
Feasibility analysis refers to the continual testing process the analyst must go
through to be sure that the system he is specifying can be implemented within
a set of given constraints. Feasibility analysis is more akin to design than to the
other analysis phase activities, since it involves building tentative physical
models of the system and evaluating them for ease of implementation. Again,
Structured Analysis does not prescribe new procedures for this activity. But its
modeling tools will have some positive effect.

1.1.6 Estimalillg

Since analysis deals so heavily with a system which exists only on paper, it
involves a large amount of estimating. The analyst is forever being called upon
to estimate cost or duration of future activities, CPU load factors, core and disk
extents, manpower allocation ... almost anything. I have never heard of a
project's success being credited to the fine estimates an analyst made; but the
converse is frequently true - poor estimates often lead to a project's downfall,
and in such cases, the analyst usually receives full credit.

Estimating is rather different from the other required analysis skills:

• Nobody is all expert estimator. You can't even take a course in
estimating, because nobody is willing to set himself up as
enough of an authority on the subject to teach it.

• We don't build our estimating skills, because we dOll't collect allY
dalO aboUl our past results. At the end of a project we rarely go

www.manaraa.com

272

back and carry out a thorough postmortem to see how the pro
ject proceeded. How many times have you seen project perfor
mance statistics published and compared to the original esti
mates'? In my experience, this is done only in the very rare
instance of a project that finishes precisely on time and on
budget. In most cases, the original schedule has long since
vanished from the record and will never be seen again.

• Nonc of this mattcrs as lIluch as it ought to anyway, since most
things we call "estimates" in computer system projects are not
estimates at all. When your manager asks you to come up
with a schedule showing project completion no later than June
1 and using no more than six people, you're not doing any real
estimating. You are simply dividing up the time as best you
can among the phases. And he probably didn't estimate ei
ther: chances are his dates and manpower loading were derived
from budgetary figures, which were themselves based upon
nothing more than Wishful Thinking.

All these factors aside, estimating plays a key part in analysis. There are
some estimating heuristics that are a by-product of Structured Analysis; these
will be discussed in a subsequent chapter. The key word here is heuristic. A
heuristic is a cheap trick that often works well but makes no guarantee. It is
not an algorithm, a process that leads to a guaranteed result.

1.1.7 Thc De.tensil'e Na(lu'c ofAna~l'sis

In addition to the analysis phase activilies presented above, there are
many others: the analyst is often a project utility infielder, called upon to per
form any number of odd jobs. As the project wears on, his roles may change.
But the major activities, and the ones that will concern us most in this book,
are: user liaison, specification, cost-benefit and feasibility analysis, and estimat
ing.

In setting about these activities, the analyst should be guided by a rule
which seems to apply almost universally: The overriding concern of analysiS is lIot
to achieve succcss, bllt to avoid failurc. Analysis is essentially a defensive busi
ness.

This melancholy observation stems from the fact that the great flaming
failures of the past have inevitably been attributable to analysis phase flaws.
When a system goes disastrously wrong, it is the analyst's fault. When a sys
tem succeeds, the credit must be apportioned among many participants, but
failure (at least the most dramatic kind) belongs completely to the analyst. If
you think of a system project that was a true rout - years late, or orders of
magnitude over budget, or totally unacceptable to the user, or utterly impossi
ble to maintain - it almost certainly was an analysis phase problem that did the
system in.

Computer system analysis is like child-rearing; you can do grievous dam
age, but you cannot ensure success.

www.manaraa.com

273

My reason for presenting this concept here is to establish the following
context for the rest of the book: The principal goal of Structured Analysis is to
minimize the probability of critical analysis phase error. The tools of Structured
Analysis are defensive means to cope with the most critical risk areas of
analysis.

1.2 Problems of analysis

Projects can go wrong at many different points: The fact that we spend so
much time, energy, and money on maintenance is an indication of our failures
as designers; the fact that we spend so much on debugging is an indictment of
our module design and coding and testing methods. But analysis failures fall
into an entirely different class. When the analysis goes wrong, we don't just
spend more money to come up with a desired result - we spend lIl/lch more
money, and often don't come up with any result.

That being the case, you might expect management to be super
conservative about the analysis phase of a project, to invest much more in do
ing the job correctly and thus avoid whole hosts of headaches downstream.
Unfortunately, it is not as simple as that. Analysis is plagued with problems
that are not going to be solved simply by throwing money at them. You may
have experienced this yourself if you ever participated in a project where too
much time was allocated to the analysis phase. What tends to happen in such
cases is that work proceeds in a normal fashion until the major products of
analysis are completed. In the remaining time, the project team spins its
wheels, agonizing over what more it could do to avoid later difficulties. When
the time is finally up, the team breathes a great sigh of relief and hurries on to
design. Somehow the extra time is just wasted - the main result of slowing
down the analysis phase and doing everything with exaggerated care is that you
just get terribly bored. Such projects are usually every bit as subject to failures
of analysis as others.

I offer this list of the major problems of analysis:

1. communication problems

2. the changing nature of computer system requirements

3. the lack of tools

4. problems of the Target Document

5. work allocation problems

6. politics

Before looking at these problems in more detail, we should note that none
of them will be solved by Structured Analysis or by any other approach to
analysis. The best we can hope for is some better means to grapple with them.

www.manaraa.com

274

1.2.1 Communication Problems

A long-unsolved problem of choreography is the development of a
rigorous notation to describe dance. Merce Cunningham, commenting on past
failures to come up with a useful notation, has observed that the motor centers
of the brain are separated from the reading and writing centers. This physical
separation in the brain causes communication difficulties.

Computer systems analysis is faced with this kind of difficulty. The busi
ness of specification is, for the most part, involved in describing procedure.
Procedure, like dance, resists description. (It is far easier to demonstrate pro
cedure than to describe it, but that won't do for our purposes.) Structured
Analysis attempts to overcome this difficulty through the use of graphics.
When you use a picture instead of text to communicate, you switch mental
gears. Instead of using one of the brain's serial processors, its reading facility,
you use a parallel processor.

All of this is a highfalutin way to present a "Iowfalutin" and very old
idea: A picture is worth a thousand words. The reason I present it at all is that
analysts seem to need some remedial work on this concept. When given a
choice (in writing a Target Document, for instance) between a picture and a
thousand words, most analysts opt unfailingly for the thousand words.

Communication problems are exacerbated in our case by the lack of a
common language between user and analyst. The things we analysts work with
- specifications, data format descriptions, flowcharts, code, disk and core maps
- are totally inappropriate for most users. The one aspect of the system the
user is most comfortable talking about is the set of human procedures that are
his interface to the system, typically something we don't get around to discuss
ing in great detail with him until well after analysis, when the user manuals are
being written.

Finally, our communication problem is complicated by the fact that what
we're describing is usually a system that exists only in our minds. There is no
model for it. In our attempts to flesh out a picture of the system, we are in
clined to fill in the physical details (CRT screens, report formats, and so forth)
much too early.

To sum it up, the factors contributing to the communication problems of
analysis are

1. the natural difficulty of describing procedure

2. the inappropriateness of our method (narrative text)

3. the lack of a common language between analyst and user

4. the lack of any usable early model for the system

www.manaraa.com

275

1.2.2 The Changing Nature of Requireme1l1s

I sometimes think managers are sent to a special school where they are
taught to talk about "freezing the specification" at least once a day during the
analysis phase. The idea of freezing the specification is a sublime fiction.
Changes won't go away and they can't be ignored. If a project lasts two years,
you ought to expect as many legitimate changes (occasioned by changes in the
way business is done) to occur during the project as would occur in the first two
years after cutover. In addition to changes of this kind, an equal number of
changes may arise from the user's increased understanding of the system. This
type of change results from early, inevitable communication failures, failures
which have since been corrected.

When we freeze a Target Document, we try to hold off or ignore change.
But the Target Document is only an approximation of the true project target;
therefore, by holding off and ignoring change, we are trying to proceed toward
a target wiTholll ben~fiT of any feedback.

There are two reasons why managers want to freeze the Target Docu
ment. First, they want to have a stable target to work toward, and second, an
enormous amount of effort is involved in updating a specification. The first
reason is understandable, but the second is ridiculous. IT is unaccepTable TO wriTe
speCificaTions ill such a way ThaT They COII'T be modified. Ease of modification has
to be a requirement of the Target Document.

This represents a change of ground rules for analysis. In the past, it was
expected that the Target Document would be frozen. It was a positive advan
tage that the document was impossible to change since that helped overcome
resistance to the freeze. It was considered normal for an analyst to hold off a
change by explaining that implementing it in the Target Document would re
Quire retyping every page. I even had one analyst tell me that the system, once
built, was going to be highly flexible, so that it would be easier to put the re
quested change into the system itself rather than to put it into the specification!

Figures collected by GTE, IBM, and TRW over a large sample of system
changes, some of them incorporated immediately and others deferred, indicate
that the difference in cost can be staggering. It can cost two orders of magni
tude more to implement a change after cutover than it would have cost to im
plement it during the analysis phase. As a rule of thumb, you should count on
a 2:1 cost differential to result from deferring change until a subsequent project
phase. 1

My conclusion from all of this is that we must change our methods; we
must begin building Target Documents that are highly maintainable. In fact,
maintainability of the Target Documen t is every bit as essential as maintainabil
ity of the eventual system.

ISee Barry Boehm's article. "Software Engineering." published in the 1£££ TrallsGmolls 011 ('0111(1/1/('(5. De
cember 1976. for a further discussion or this topic.

www.manaraa.com

276

1.2.3 The Lack of Tools

Analysts work with their wits plus paper and pencil. That's about it. The
fact that you are reading this book implies that you are looking for some tools
to work with. For the moment, my point is that most analysts don't have any.

As an indication of this, consider your ability to evaluate the products of
each project phase. You would have little difficulty evaluating a piece of code:
If it were highly readable, well submodularized, well commented, conformed to
generally accepted programming practice, had no GOTO's, ALTER's, or other
forms of pathology - you would probably be willing to call it a good piece of
code. Evaluating a design is more difficult, and you would be somewhat less
sure of your judgment. But suppose you were asked to evaluate a Target Docu
ment. Far from being able to judge its quality, you would probably be hard
pressed to say whether it qualified as a Target Document at all. Our inability to
evaluate any but the most incompetent efforts is a sign of the lack of analysis
phase tools.

1.2.4 Problems Q[the Target Document

Obviously the larger the system, the more complex the analysis. There is
little we can do to limit the size of a system; there are, however, intelligent and
unintelligent ways to deal with size. An intelligent way to deal with size is to
partition. That is exactly what designers do with a system that is too big to deal
with conveniently - they break it down into component pieces (modules). Ex
actly the same approach is called for in analysis.

The main thing we have to partition is the Target Document. We have to
stop writing Victorian novel specifications, enormous documents that can only
be read from start to finish. Instead, we have to learn to develop dozens or
even hundreds of "mini-specifications." And we have to organize them in
such a way that the pieces can be dealt with selectively.

Besides its unwieldy size, the classical Target Document is subject to fur-
ther problems:

• It is excessively redundant.

• It is excessively wordy.

• It is excessively physical.

• It is tedious to read and unbearable to write.

1.2.5 Work Allocation

Adding manpower to an analysis team is even more complicated than
beefing up the implementation team. The more successful classical analyses are
done by very small teams, often only one person. On rush projects, the
analysis phase is sometimes shortchanged since people assume it will take for
ever, and there is no convenient way to divide it up.

www.manaraa.com

277

I think it obvious that this, again, is a partitioning problem. Our failure to
come up with an early partitioning of the subject matter (system or business
area) means that we have no way to divide up the rest of the work.

1.2.6 Politics

Of course, analysis is an intensely political subject. Sometimes the
analyst's political situation is complicated by communication failures or inade
quacies of his methods. That kind of problem can be dealt with positively -
the tools of Structured Analysis, in particular, will help.

But most political problems do not lend themselves to simple solutions.
The underlying cause of political difficulty is usually the changing distribution
of power and autonomy that accompanies the introduction of a new system. No
new analysis procedures are going to make such an impending change less
frightening.

Political problems aren't going to go away and they won't be "solved."
The most we can hope for is to limit the effect of disruption due to politics.
Structured Analysis approaches this objective by making analysis procedures
more formal. To the extent that each of the analyst's tasks is clearly (and pub
licly) defined, and has clearly stated deliverables, the analyst can expect less
political impact from them. Users understand the limited nature of his investi
gations and are less inclined to overreact. The analyst becomes less of a threat.

1.3 The user-analyst relationship

Since Structured Analysis introduces some changes into the user-analyst
relationship, I think it is important to begin by examining this relationship in
the classical environment. We need to look at the user's role, the analyst's
role, and the division of responsibility between them.

I.J.I What Is a User?

First of all, there is rarely just one user. In fact, the term "user" refers
to at least three rather different roles:

• The /wllds-oll IIser. the operator of the system. Taking an on
line banking system as an example, the hands-on users might
include tellers and platform officers.

• The respollsible IIser, the one who has direct business responsi
bility for the procedures being automated by the system. In
the banking example, this might be the branch manager.

• The system oWller. usually upper management. In the banking
example, this might be the Vice President of Banking Opera
tions.

www.manaraa.com

278

Sometimes these roles are combined, but most often they involve distinctly
different people. When multiple organizations are involved, you can expect the
total number of users to be as much as three times the number of organiza
tions.

The analyst must be responsible for communication with al/ of the users.
I am continually amazed at how many development teams jeopardize their
chances of success by failing to talk to one or more of their users. Often this
takes the form of some person or organization being appointed "User
Representative." This is done to spare the user the bother of the early system
negotiations, and to spare the development team the bother of dealing with
users. User Representatives would be fine if they also had authority to accept
the system. Usually they do not. When it comes to acceptance, they step aside
and let the real user come forward. When this happens, nobody has been
spared any bother.

1.3.2 What Is all Allalyst?

The analyst is the princioal link between the user area and the implemen
tation effort. He has to communicate the requirements to the implementors,
and the details of how requirements are being satisfied back to the users. He
may participate in the actual determination of what gets done: It is often the
analyst who supplies the act of imagination that melds together applications and
present-day technology. And, he may participate in the implementation. In do
ing this, he is assuming the role that an architect takes in guiding the construc
tion of his building.

While the details may vary from one organization to the next, most
analysts are required to be

• at ease with EDP concepts

• at ease with concepts particular to the business area

• able to communicate such concepts

1.3.3 Division of Responsibility Between Analyst and User

There is something terribly wrong with a user-analyst relationship in
which the user specifk .. s such physical details as hardware vendor, software ven
dor, programming language, and standards. Equally upsetting is the user who
relies upon the analyst to decide how business ought to be conducted. What is
the line that separates analyst functions from user functions?

I believe the analyst and the user ought to try to communicate across a
"logical-physical" boundary that exists in any computer system project. Logical
considerations include answers to the question, What needs to be accomplished?
These fall naturally into the domain of the user. Physical considerations in
clude answers to the question, How shall we accomplish these things? These are
in the domain of the analyst.

www.manaraa.com

279

1.4 What is Structured Analysis?

So far, most of what we have been discussing has been the classical
analysis phase, its problems and failings. How is Structured Analysis different?
To answer that question, we must consider

• New goals for analysis. While we're changing our methods,
what new analysis phase requirements shall we consider?

• Structured tools for analysis. What is available and what can
be adapted?

1.4.1 New Goals/or Analysis

Looking back over the recognized problems and failings of the analysis
phase, I suggest we need to make the following additions to our set of analysis
phase goals:

• The products of analysis must be highly maintainable. This
applies particularly to the Target Document.

• Problems of size must be dealt with using an effective method
of partitioning. The Victorian novel specification is out.

• Graphics have to be used wherever possible.

• We have to differentiate between logical and physical con
siderations, and allocate responsibility, based on this differen
tiation, between the analyst and the user.

• We have to build a logical system model so the user can gain
familiarity with system characteristics before implementation.

1.4.2 Structured Tools/or Analysis

At the very least, we require three types of new analysis phase tools:

• Something to help us partition our requirement and document
that partitioning before specification. For this I propose we use
a Data Flow Diagram, a network of interrelated processes.
Data Flow Diagrams are discussed in Chapters 4 through 10.

• Some means of keeping track of and evaluating interfaces
without becoming unduly physical. Whatever method we
select, it has to be able to deal with an enormous flood of de
tail - the more we partition, the more interfaces we have to
expect. For our interface tool I propose that we adopt a set of
Data Dictionary conventions, tailored to the analysis phase.
Data Dictionary is discussed in Chapters 11 through 14.

www.manaraa.com

280

• New tools to describe logic and policy, something better than
narrative text. For this I propose three possibilities: Structured
English, Decision Tables, and Decision Trees. These topics are
discussed in Chapters 15 through 17.

1.4.3 Structured Analysis - A Definition

Now that we have laid all the groundwork, it is easy to give a working
definition of Structured Analysis:

Structured Analysis is the use of these tools:

Data Flow Diagrams
Data Dictionary
Structured English
Decision Tables
Decision Trees

to build a new kind of Target Document, the Structured Specification.
Although the building of the Structured Specification is the most impor

tant aspect of Structured Analysis, there are some minor extras:

• estimating heuristics

• methods to facilitate the transition from analysis to design

• aids for acceptance test generation

• walkthrough techniques

1.4.4 What S,rucwred Analysis Is Not

Structured Analysis deals mostly with a subset of analysis. There are
many legitimate aspects of analysis to which Structured Analysis does not
directly apply. For the record, I have listed items of this type below:

• cost-benefit analysis

• feasibility analysis

• project management

• performance analysis

• conceptual thinking (Structured Analysis might help you com
municate better with the user; but if the user is just plain
wrong, that might not be of much long-term benefit.>

• equipment selection

• personnel considerations

• politics

My treatment of these subjects is limited to showing how they fit in with the
modified methods of Structured Analysis.

www.manaraa.com

281

3 THE TOOLS OF STRUCTURED ANALYSIS

The purpose of this chapter is to give you a look at each one of the tools
of Structured Analysis at work. Once you have a good idea of what they are
and how they fit together, we can go back and discuss the details.

3.1 A sample situation

The first example I have chosen is a real one, involving the workings of
our own company, Yourdon inc. To enhance your understanding of what fol
lows, you ought to be aware of these facts:

1. Yourdon is a medium-sized computer consulting and training
company that teaches public and inhouse sessions in major
cities in North America and occasionally elsewhere.

2. People register for seminars by mail and by phone. Each
registration results in a confirmation letter and invoice being
sent back to the registrant.

3. Payments come in by mail. Each payment has to be matched
up to its associated invoice to credit accounts receivable.

4. There is a mechanism for people to cancel their registrations if
they should have to.

S. Once you have taken one of the company's courses, or even
expressed interest in one, your name is added to a data base of
people to be pursued relentlessly forever after. This data base
contains entries for tens of thousands of people in nearly as
many organizations.

6. In addition to the normal sales prompting usage of the data
base, it has to support inquiries such as

• When is the next Structured Design Programming
Workshop in the state of California?

• Who else from my organization has attended the Struc
tured Analysis seminar? How did they rate it?

• Which instructor is giving the Houston Structured Design
and Programming Workshop next month?

In early 1976, Yourdon began a project to install a set of automatea
management and operational aids on a PDP-1l/4S, running under the UNIX
operating system. Development of the system - which is now operational -
first called for a study of sales and accounting functions. The study made use
of the tools and techniques of Structured Analysis. The following subsections
present some partial and interim products of our analysis.

www.manaraa.com

282

3.2 A Data Flow Diagram example

An early rnodel of the operations of the cornpany is presented in Fig. 9.
It is in the forrn of a Logical Data Flow Diagrarn. Refer to that figure now, and
we'll walk through one of its paths. The rest should be clear by inference.

Input to the portrayed area comes in the form of Transactions ("Trans"
in the figure). These are of five types: Cancellations, Enrollrnents, Payrnents,
Inquiries, plus those that do not qualify as any of these, and are thus con
sidered Rejects. Although there are no people or locations or departrnents
shown on this figure (it is logical, not physicaJ), I will fill sorne of these in for
you, just as I would for a user to help him relate back to the physical situation
that he knows. The receptionist (a physical consideration) handles all incorning
transactions, whether they come by phone or by mail. He perforrns the initial
edit, shown as Process 1 in the figure. People who want to take a course in
Unmitigated Freelance Speleology, for example, are told to look elsewhere. In
complete or irnproperly specified enrollment requests and inquiries, etc., are
sent back to the originator with a note. Only clean transactions that fall into the
four acceptable categories are passed on.

Enrollrnents go next to the registrar. His function (Process 2) is to use
the inforrnation on the enrollment form to update three files: the People File,
the Serninar File, and the Payments File. He then fills out an enrollment chit
and passes it on to the accounting department. In our figure, the enrollrnent
chit is called "E-Data," and the accounting process that receives it is Process 6.

Inforrnation on the chit is now transformed into an invoice. This process
is partially automated, by the way - a ledger machine is used - but that infor
rnation is not shown on a logical Data Flow Diagram.

The invoice passes on to the confirmation process (which happens to be
done by the receptionist in this case). This task (Process 7) involves cornbining
the invoice with a custornized form letter, to be sent out together as a
confirrnation. The confirmation goes back to the custorner.

3.2.1 Some Data Flow Diagram Conventions

If you have followed the narrative so far, you have already picked up the
major Data Flow Diagram conventions:

• The Data Flow Diagram shows flow oj data, not oj control. This
is the difference between Data Flow Diagrams and flowcharts.
The Data Flow Diagram portrays a situation from the point of
view of the data, while a flowchart portrays it from the point of
view of those who act upon the data. For this reason, you al
most never see a loop in a Data Flow Diagram. A loop is
something that the data are unaware of~ each datum typically
goes through it once, and so from its point of view it is not a
loop at all. Loops and decisions are control considerations and
do not appear in Data Flow Diagrams.

www.manaraa.com

283

Figure 9

www.manaraa.com

284

• Four notational symbols are used. These are:

The named vector (called a data flow), which portrays a
data path.

The bubble (called a process), which portrays transforma
tion of data.

The straight line, which portrays a file or data base.

The box (called a source or sink), which portrays a net
originator or receiver of data - typically a person or an
organization outside the domain of our study.

Since no control is shown, you can't tell from looking at a Data Flow Di
agram which path will be followed. The Data Flow Diagram shows only the set·
of possible paths. Similarly, you can't tell what initiates a given process. You'
cannot assume, for instance, that Process 6 is started by the arrival of an E
Data - in fact, that's not how it works at all. E-Data's accumulate until a cer
tain day of the week arrives, and then invoices all go out in a group. So the
data flow E-Data indicates the data path, but not the prompt. The prompting
information does not appear on a Data Flow Diagram.

3.2.2 An Important Advantage of the Data Flow Diagram

Suppose you were walking through Fig. 9 with your user and he made the
comment: "That's all very fine, but in addition to seminars, this company also
sells books. I don't see the books operation anywhere."

. "Don't worry, Mr. User," you reply, "the book operation is fully covered
here," (now you are thinking furiously where to stick it) "here in Process .. ,
urn ... Process Number 3. Yes, definitely 3. It's part of recording payments,
only you have to look into the details to see that."

Analysts are always gOod at thinking on their feet, but in this case, the
effort is futile. The book operation has quite simply been le.li OUI of Fig. 9 -
it's wrong. No amount of thinking on your feet can cover up this failing. No
books flow in or out, no inventory information is available, no reorder data
flows are shown. Process 3 simply doesn't have access to the information it
needs to carry out books functions. Neither do any of the others.

Your only option at this point is to admit the figure is wrong and fix it.
While this might be galling when it happens, in the long run you are way ahead
- making a similar change later on to the hard code would cost you consider
ably more grief.

I have seen this happen so many times: an analyst caught flat-footed with
an incorrect Data Flow Diagram, trying to weasel his way out, but eventually
being forced to admit that it is wrong and having to fix it. I conclude that it is a
natural characteristic of the tool:

When a Data Flow Diagram is wrong. il is glaring(v. demonstrably. inde
fel1sibly wrol1g.

www.manaraa.com

285

This seems to me to be an enormous advantage of using Data Flow Diagrams.

3.2.3 What Have We Accomplished With a Data Flow Diagram?

The Data Flow Diagram is documentation of a situation from the point of
view of the data. This turns out to be a more useful viewpoint than that of any
of the people or systems that process the data, because the data itself sees the
big picture. So the first thing we have accomplished with the Data Flow Di
agram is to come up with a meaningful portrayal of a system or a part of a sys
tem.

The Data Flow Diagram can also be used as a model of a real situation.
You can try things out on it conveniently and get a good idea of how the real
system will react when it is finally built.

Both the conceptual documentation and the modeling are valuable results
of our Data Flow Diagramming effort. But something else, perhaps more im
portant, has come about as a virtually free by-product of the effort: The Data
Flow Diagram gives us a highly useful partitioning of a system. Fig. 9 shows an
unhandily large operation conveniently broken down into eight pieces. It also
shows all the interfaces among those eight pieces. Of any interface is left out,
the diagram is simply wrong and has to be fixed.)

Notice that the use of a Data Flow Diagram causes us to go about our
partitioning in a rather oblique way. If what we wanted to do was break things
down, why didn't we just do that'! Why didn't we concen trate on functions
and subfunctions and just accomplish a brute-force partitioning'! The reason
for this is that a brute-force partitioning is too difficult. It is too difficult to say
with any assurance that some task or group of tasks constitutes a "function."
In fact, I'll bet you can't even define the word function except in a purely
mathematical sense. Your dictionary won't do much better - it will give a
long-winded definition that boils down to saying a function is a bunch of stuff
to be done. The concept of function is just too imprecise for our purposes.

The oblique approach of partitioning by Data Flow Diagram gives us a
"functional" partitioning, where this very special-purpose definition of the
word functional applies:

A partitioning may be considered functional when the interfaces
among the pieces are minimized.

This kind of partitioning is ideal for our purposes.

3.3 A Data Dictionary example

Refer back to Fig. 9 for a moment. What is the interface between Process
3 and Process 7'! As long as all that specifies the interface is the weak name
"Payment-Data," we don't have a specification at all. "Payment-Data" could
mean anything. We must state precisely what me mean by the data flow bear
ing that name in order for our Structured Specification to be anything more
than a hazy sketch of the system. It is in the Data Dictionary that we state pre
cisely what each of our data flows is made up of.

www.manaraa.com

286

An entry from the sample project Data Dictionary might look like this:

Payment-Data = Customer-Name +
Customer-Address +
Invoice-Number +
Amount-of-Payment

In other words, the data flow called "Payment-Data" consists precisely of
the items Customer-Name, Customer-Address, Invoice-Number, and
Amount-of-Payment, concatenated together. They must appear in that order,
and they must all be present. No other kind of data flow could qualify as a
Payment-Data, even though the name might be applicable.

You may have to make several queries to the Data Dictionary in order to
understand a term completely enough for your needs. (This also happens with
conventional dictionaries - you might look up the term perspicacious, and find
that it means sagacious; then you have to look up sagacious.) In the case of the
example above, you may have to look further in the Data Dictionary to see ex
actly what an Invoice-Number is:

I nvoice..Number State-Code +
Customer-Account-Number +
Salesman-ID +
Sequential-I nvoice-Count

Just as the Data Flow Diagram effects a partitioning of the area of our
study, the Data Dictionary effects a top-down partitioning of our data. At the
highest levels, data flows are defined as being made up of subordinate ele
ments. Then the subordinate elements (also data flows) are themselves
defined in terms of still more detailed subordinates.

Before our Structured Specification is complete, there will have to be a
Data Dictionary entry for every single data flow on our Data Flow Diagram,
and for all the subordinates used to define them. In the same fashion, we can
use Data Dictionary entries to define our files.

3.4 A Structured English example

Partitioning is a great aid to specification, but you can't specify by parti
tioning alone. At some point you have to stop breaking things down into finer
and finer pieces, and actually document the makeup of the pieces. In the terms
of our Structured Specification, we have to state what it takes to do each of the
data transformations indicated by a bubble on our Data Flow Diagram.

There are many ways we could go about this. Narrative text is certainly
the most familiar of these. To the extent that we have partitioned sufficiently
before beginning to specify, we may be spared the major difficulties of narrative
description. However, we can do even better.

www.manaraa.com

287

A tool that is becoming more and more common for process description is
Structured English. Presented below is a Structured English example of a
user's invoice handling policy from the sample analysis. It appears without
clarification; if clarification is needed, it has failed in its intended purpose.

====================================

POLICY FOR INVOICE PROCESSING

If the amount of the invoice exceeds $500.
If the account has any invoice more than 60 days overdue.

hold the confirmation pending resolution of the debt.
Else (account is in good standing).

issue confirmation and invoice.
Else (invoice 5500 or less).

If the account has any invoice more than 60 days overdue.
issue confirmation. invoice and write message on the
credit action report.

Else (account is in good standing).
issue confirmation and invoice.

~===================================

3.S A Decision Table example

The same policy might be described as well by a Decision Table:

CONDITIONS

1. Invoice > 5500
2. Account over

due by 60 + days

ACTIONS

1. Issue Confirmation
2. Issue Invoice
3. Msg to C.A.R.

3.6 A Decision Tree example

RULES

1 2 3 4

YNYN

YYNN

NYYY
NYYY
NYNN

As a third alternative, you might describe the same policy with a Decision
Tree. I have included the equivalent Decision Tree as Fig. 10.

www.manaraa.com

288

ACCTOVER.
DUE> 68 DAYS

/
INVOICE
> SSOO

ACTION

- 1. HOLD CONFIRMATION
PENDING
DEBT RESOLUTIO~

/ " ACCOUNT IN ----:1; ISSUE CONFIRMATION
GOOD STNDG AND INVOICE

ACCOUNT
POLICY

Figure 10

ACCOUNT OVER· - 3. ISSUE CONFIRMATION,
DUE> 60 DAYS INVOICE AND WRITE

/ MSG ON C.A.R.

INVOICE
< .. SSOO

" ACCOUNT IN ---- 4. ISSUE CONFIRMATION
GOOD STNDG AND INVOICE

www.manaraa.com

Edsger Dijkstra

Solution of a Problem in Concurrent Programming Control

Communications of the ACM, Vol. 8 (9), 1965
pp.569

Go To Statement Considered Harmful

Communications of the ACM, Vol. 11 (2), 1968
pp. 147-148

www.manaraa.com

Solution of a Problem in
Concurrent Programming Control
E. W. DIJKSTR..\.

Technological Un'iversity, Eindhoven, The Netherlands

A number of mainly independent sequential-cyclic processes

with restricted means of communication with each other can

be made in such a way that at any moment one and only one

of them is engaged in the "critical section" of its cycle.

Introduction

Given in this paper is a solution to a problem for which,
to the knowledge of the author, has been an open question
since at least 1962, irrespective of the solvability. The
paper consists of three parts: the problem, the solution,
and the proof. Although the setting of the problem might
seem somewhat academic at first, the author trusts that
anyone familiar with the logical problems that arise in
computer coupling will appreciate the significance of the
fact that this problenl indeed can be solved.

The ProbleDl

To begin, consider N computers, each engaged in a
process which, for our ainls, can be regarded as cyclic. In
each of the cycles a so-called "critical section" occurs and
the computers have to be programmed in such a way that
at any moment only one of these N cyclic processes is in
its critical section. In order to effectuate this mutual
exclusion of critical-section execution the computers can
communicate with each other via a common store. Writing
a word into or nondestructively reading a word from this
store are undividable operations; i.e., when two or more

www.manaraa.com

292

computers try to communicate (either for reading or for
writing) simultaneously with the same common location,
these communications will take place one after the other,
but in an unknown order.

The solution must satisfy the following requirements.
(a) The solution must be symmetrical between the N

computers; as "a result we are not allowed to introduce a
static priority.

(b) Xothing may be assumed about the relative speeds
of the !\T conlputers; we may not even assume their speeds
to be constant in tinle.

(c) If any of the computers is stopped well outside its
critical section, this is not allowed to lead to potential
blocking of the others.

(d) If nlore than one computer is about to enter its
critical section, it must be impossible to devise for thenl
such finite speeds, that the decision to determine which
one of thenl mIl enter its critical section first is postponed
until eternity. In other words, constructions in which
"After you" -" After you" -blocking is still possible, although
improbable, are not to be regarded as valid solutions.

We beg the challenged reader to stop here for a while
and have a try himself, for this seems the only way to get
a feeling for the tricky consequences of the fact that each
conlputer can only request one one-way message at a time.
And only this will make the reader realize to what extent
this problenl is far from trivial.

The Solution

The conunon store consists of:
"Boolean array b, c[l :N]; integer k"

The integer k will satisfy 1 < k < N, b[i] and c[i]
will only be setby the ith computer; they will be inspected
by the others. It is assumed that all computers are started
well outside their critical sections with all Boolean arrays
mentioned set to true; the starting value of k is immaterial.

The program for the ith computer (1 < i < N) is:

www.manaraa.com

"integer j;
LiO: b[i]:= false;
Lil: if k ¢ i then
Li2: begin c[i] := true;
Li3: if b[k] then k := i;

go to Lil
end

else
Li4: begin c[i] := false;

293

for j := 1 step 1 until N do
if j ¢ i and not c[j] then go to Lil

end;
critical section;
c[i] := true; b[i]:= true;
remainder of the cycle in which stopping is allowed;
go to LiO"

The Proof

vVe start by observing that the solution is safe in the
sense that no two computers can be in their critical section
simultaneously. For the only way to enter its critical
section is the performance of the compound statement
Li4 without jumping back to Lil, i.e., finding all other
c's true after having set its own c to false.

The second part of the proof must show that no infinite
"After you"-"After you"-blocking can occur; i.e., when
none of the computers is in its critical section, of the
computers looping (i.e., jumping back to Lil) at least
one-and therefore exactly one-will be allowed to enter
its critical section in due time.

If the kth computer is not among the looping ones,
brk] will be true and the looping ones will all find k ~ i.
As a result one or more of them will find in LiB the Boolean
b[k] true and therefore one or more will decide to assign
"k : = i". After the first assignment "k: = i", b[k] be
comes false and no new computers can decide again to
assign a new value to k. When all decided assignments to

www.manaraa.com

294

k have been performed, k will point to one of the looping
computers and will not change its value for the time being,
i.e., until b[k] becomes true, viz., until the kth computer
has completed its critical section. As soon as the value of
k does not change any more, the kth computer will wait
(via the compound statement Li4) until all other c's are
true, but this situation will certainly arise, if not already
present, because all other looping ones are forced to set
their c true, as they will find k ~ i. And this, the author
believes, completes the proof.

www.manaraa.com

Letters to the Editor

www.manaraa.com

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet
itive clause, program intelligibility, program sequencing

OR Categories: 4.22, 5.23, 5.24

EDITOR:

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state
ment should be abolished from all "higher level" programming
languages (i.e. everything except, perhaps, plain machine code).
At that time I did not attach too much importance to this dis
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the programmer's activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his activity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
bas to satisfy the desired specifications. Yet, once the program has
been made, the "making" of the corresponding process is dele
lated to the machine.

My second remark is that our intellectual powers are rather
leared to master static relations and that our powers to visualize
processes evolving in time are relatively poorly developed. For
that reason we should do (as wise programmers aware of our
limitations) our utmost to shorten the conceptual gap between
the static program and the dynamic process, to make the cor
respondence between the program (spread out in text space) and
the process (spread out in time) as trivial as possible.

Let us now consider how we can characterize the progress of a
process. (You may think about this question in a very concrete
manner: suppose that a process, considered as a time succession
of actions, is stopped after an arbitrary action, what data do we
have to fix in order that we can redo the process until the very
same point?) If the program text is a pure concatenation of, say,
assignment statements (for the purpose of this discussion regarded
as the descriptions of single actions) it is sufficient to point in the

www.manaraa.com

298

program text to a point between two successive action descrip
tions. (In the absence of go to statements I can permit myself the
syntactic ambiguity in the last three words of the previous sen
tence: if we parse them as "successive (action descriptions)" we
mean successive in text space; if we parse as "(successive action)
descriptions" we mean successive in time.) Let us cal! such a
pointer to a suitable place in the'text a "textual index."

When we include conditional clauses (if B then A), alternative
clauses (if B then Al else A2), choice clauses as introduced by
C. A. R. Hoare (case[i] of (AI, A2, ... ,An», or conditional expres
sions as introduced by J. McCarthy (BI -+ El, B2 -+ E2, ... ,
Bn -+ En), the fact remains that the progress of the process re
mains characterized by a single textual index.

As soon as we include in our language procedures we must admit
that a single textual index is no longer sufficient. In the case that
a textual index points to the interior of a procedure body the
dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don't wish to ex
clude them: on the one hand, repetition clauses can be imple
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as "induction"
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process. With each entry into
a repetition clause, however, we can associate a so-called "dy
namic index," inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process can always be uniquely characterized by a
(mixed) sequence of textua1 and/or dynamic indices.

The main point is that the values of these indices are outside
programmer's control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent coordinates in which
to describe the progress of the process.

www.manaraa.com

299

Why do we need such independent coordinates? The reason
is-and this seems to be inherent to sequential processes-that
we can interpret the value of a variable only with respect to the
progress of the process. If we wish to count the number, n say, of
people in an initially empty room, we can achieve this by increas
ing n by one whenever we see someone entering the room. In the
in-between moment that we have observed someone entering the
room but have not yet performed the subsequent increase of n,
its value equals the number of people in the room minus one!

The unbridled use of the go to statement has an immediate
consequence that it becomes terribly hard to find a meaningful set
of coordinates in which to describe the process progress. Usually,
people take into account as well the values of some well chosen
variables, but this is out of the question because it is relative to
the progress that the meaning of these values is to be understood!
With the go to statement one can, of course, still describe the
progress uniquely by a counter counting the number of actions
performed since program start (viz. a kind of normalized clock).
The difficulty is that such a coordinate, although unique, is utterly
unhelpful. In such a coordinate system it becomes an extremely
complicated affair to define all those points of progress where,
say, n equals the number of persons in the room minus one!

The go to statement as it stands is just too primitive; it is too
much an invitation to make a mess of one's program. One can
regard and appreciate the clauses considered as bridling its use. I
do not claim that the clauses mentioned are exhaustive in the sense
that they will satisfy all needs, but whatever clauses are suggested
(e.g. abortion clauses) they should satisfy the requirement that a
programmer independent coordinate system can be maintained to
describe the process in a helpful and manageable way.

It is hard to end this with a fair acknowledgment. Am I to
judge by whom my thinking has been influenced? It is fairly
obvious that I am not uninfluenced by Peter Landin and Chris
topher Strachey. Finally I should like to record (as I remember it
quite distinctly) how Heinz Zemanek at the pre-ALGOL meeting
in early 1959 in Copenhagen quite explicitly expressed his doubts
whether the go to statement should be treated on equal syntactic
footing with the assignment statement. To a modest extent I
blame myself for not having then drawn the consequences of his
remark.

The remark about the undesirability of the go to statement is
far from new. I remember having read the explicit reco31lIlenda-

www.manaraa.com

300

tion to restrict the use of the go to statement to alarm exits, but
I have not been able to trace it; presumably, it has been made by
C. A. R. Hoare. In [1, Sec. 3.2.1.] Wirth and Hoare together
make a remark in the same direction in motivating the case
construction: "Like the conditional, it mirrors the dynamic
structure of a program more clearly than go to statements and
switches, and it eliminates the need for introducing a large number
of labels in the program."

In [2] Guiseppe Jacopini seems to have proved the (logical)
superfluousness of the go to statement. The exercise to translate
an arbitrary flow diagram more or less mechanically into a jump
less one, however, is not to be recommended. Then the resulting
How diagram cannot be expected to be more transparent than the
original one.

REFERENCES:
1. WIRTH, NIKLA"C"S, AND HOARE, C. A. R. A contribution to the

development of ALGOL. Comm. ACM 9 (June 1966),413-432.
2. BOHM, CORRADO, AND JACOPINI, GUISEPPE. Flow diagraIns,

Turing machines and languages with only two formation
rules. Comm. ACM 9 (May 1966), 366-371.

EDSGER W. DIJKSTRA
Technological University
Eindhoven, The Netherlands

www.manaraa.com

Michael Fagan

Design and Code Inspections to Reduce Errors in Program
Development

IBM Systems Journal, Vol. 15 (3),1976
pp. 182-211

www.manaraa.com

Substantial net improvements in programming quality and pro
ductivity have been obtained through the use of formal inspec
tions of design and of code. Improvements are made possible by
a systematic and efficient design and code verification process,
with well-defined roles for inspection participants. The manner
ill which inspection data is categorized and made suitable for
process analysis is an important factor in attaining the improve
ments. It is shown that by using inspection results, a mechanism
for initial error reduction followed by ever-improving error rates
can be achieved.

"Design and code inspections
to reduce errors in program development

by M. E. Fagan

Successful management of any process requires planning, mea
surement, and control. In programming development, these re
quirements translate into defining the programming process in
terms of a series of operations, each operation having its own
exit criteria. Next there must be some means of measuring com
pleteness of the product at any point of its development by
inspections or testing. And finally. the measured data must be
used for controlling the process. This approach is not only con
ceptually interesting, but has been applied successfully in sever
al programming projects embracing systems and applications
programming, both large and small. It has not been found to "get
in the way" of programming, but has instead enabled higher
predictability than other means, and the use of inspections has
improved productivity and product quality. The purpose of this
paper is to explain the planning, measurement, and control func
tions as they are affected by inspections in programming terms.

An ingredient that gives maximum play to the planning, mea
surement, and control elements is consistent and vigorous disci
pline. Variable rules and conventions are the usual indicators of
a lack of discipline. An iron-clad discipline on all rules, which
can stifle programming work. is not required but instead there
should be a clear understanding of the flexibility (or nonflex
ibility) of each of the rules applied to various aspects of the pro-

www.manaraa.com

304

ject. An example of flexibility may be waiving the rule that all
main paths will be tested for the case where repeated testing of
a given path will logically do no more than add expense. An ex
ample of necessary inflexibility would be that all code must be
inspected. A clear statement of the project rules and changes to
these rules along with faithful adherence to the rules go a long
way toward practicing the required project discipline.

A prerequisite of process management is a clearly defined series
of operations in the process (Figure 1). The miniprocess within
each operation must also be clearly described for closer manage
ment. A clear statement of the criteria that must be satisfied to
exit each operation is mandatory. This statement and accurate
data collection, with the data clearly tied to trackable units of
known size and collected from specific points in the process, are
some essential constituents of the information required for pro
cess management.

In order to move the form of process management from qualita
tive to more quantitative, process terms must be more specific,
data collected must be appropriate, and the limits of accuracy of
the data must be known. The effect is to provide more precise

Figure 1 Programming pACess

PROCESS
OPERATIONS

OUTPUT (+ 'llETAILEO EXIT
CRITERIA)

IOENTIFIABLE LEVEL
OF FUNCTION

o LEVEL 0 _ STATEMENT OF OBJECTIVES _____ COMPONENT

~
LEVEL I _ ARCHITECTURE COMPONENT _

__ 2 _ EXTERNAL SPECIFICATIONS ______ FUNCTION __

~ _ 3 _ INTERNAL SPECIFICATIONs MODULE

~ - 10 INSPECTION

- 4_ LOGIC SPECIFICATIONS ______ LOGIC 7
- II DESIGN COMPLETE INSPEItTION

O LEVElS - CODING/IMPLEMENTATION ----- LOGIC
:3 - 12 CODE INSPECTION

U UNITTEST _________ _

0f:l LEVElS - FUNCTION TEST ________ FUNCTION+ __

~ _ 7 _ COMPONENT TEST COMPONENT + _

__ 8_ SYSTEM TEST ________ COMPONENT+_

ORIGIN OF TEST
LEVEL OBJECTIVES

NOTE: CONTROL OF THE PROCESS REQUIRES THAT ALL REWORK TO MEET THE EXIT CRITERIA FOR ANY LEVEL BE
COMPLETED BEFORE THAT LEVEL IS CLAIMED AS COMPLETE FOR ANY TRACKABLE UNIT.

www.manaraa.com

305

information in the correct process context for decision making
by the process manager.

In this paper, we first describe the programming process and
places at which inspections are important. Then we discuss fac
tors that affect productivity and the operations involved with
inspections. Finally, we compare inspections and walk-throughs
on process control.

A process may be described as a set of operations occurring in a
definite sequence that operates on a given input and converts it
to some desired output. A general statement of this kind is suffi
cient to convey the notion of the prooess. In a practical applica
tion, however, it is necessary to des6ribe the input, output, inter
nal processing, and processing times of a process in very specific
terms if the process is to be executed and practical output is to
be obtained.

In the programming development process, explicit requirement
statements are necessary as input. The series of processing op
erations that act on this input must be placed in the correct se
quence with one another, the output of each operation satisfying
the input needs of the next operation. The output of the final
operation is, of course, the explicitly required output in the form
of a verified program. Thus, the objective of each processing
operation is to receive a defined input and to produce a definite
output that satisfies a specific set of exit criteria. (It goes with
out saying that each operation can be considered as a minipro
cess itself.) A well-formed process can be thought of as a con
tinuum of processing during which sequential sets of exit criteria
are satisfied, the last set in the entire series requiring a well-de
fined end product. Such a process is not amorphous. It can be
measured and controlled.

Unambiguous, explicit, and universally accepted exit criteria
would be perfect as process control checkpoints. It is frequently
argued tha,t universally agreed upon checkpoints are impossible
in programming because all projects are different, etc. However,
all projects do reach the point at which there is a project check
point. As it stands, any trackable unit of code achieving a clean
compilation can be said to have satisfied a universal exit criteri
on or checkpoint in the process. Other checkpoints can also be
selected, albeit on more arguable premises, but once the prem-

a
manageable

process

exit

criteria

www.manaraa.com

306

ises are agreed upon, the checkpoints become visible in most, if
not all, projects. For example, there is a point at which the de
sign of a program is considered complete. This point may be
described as the level of detail to which a unit of design is re
duced so that one design statement will materialize in an esti
mated three to 10 source code instructions (or, if desired. five
to 20, for that matter). Whichever particular ratio is selected
across a project, it provides a checkpoint for the process con
trol of that project. In this way. suitable checkpoints may be
selected throughout the development process and used in process
management. (For more specific exit criteria see Reference 1.)

The cost of reworking errors in programs becomes higher the
later they are reworked in the process, so every attempt should
be made to find and fix errors as early in the process as possible.
This cost has led to the use of the inspections described later
and to the description of exit criteria which include assuring that
all errors known at the end of the inspection of the new "clean
compilation" code, for example, have been correctly fixed. So,
rework of all known errors up to a particular point must be
complete before the associated checkpoint can be claimed to be
met for any piece of code.

Where inspections are not used and errors are found during de
velopment or testing, the cost of rework as a fraction of overall
development cost can be suprisingly high. For this reason, er
rors should be found and fixed as close to their place of origin as
possible.

Production studies have validated the expected quality and pro
ductivity improvements and have provided estimates of standard
productivity rates, percentage improvements due to inspections.
and percentage improvements in error rates which are applicable
in the context of large-scale operating system program produc
tion. (The data related to operating system development con
tained herein reflect results achieved by IBM in applying the sub
ject processes and methods to representative samples. Since the
results depend on many factors, they cannot be considered rep
resentative of every situation. They are furnished merely for
the purpose of illustrating what has been achieved in sample
testing.)

The purpose of the test plan inspection ITp shown in Figure 1,
is to find voids in the functional variation coverage and other
discrepancies in the test plan. IT 2' test case inspection of the
test cases, which are based on the test plan, finds errors in the

www.manaraa.com

307

test cases. The total effects of ITI and IT2 are to increase the
integrity of testing and, hence, the quality of the completed
product. And, because there are less errors in the test cases to
be debugged during the testing phase, the overall project schedule
is also improved.

A process of the kind depicted in Figure 1 installs all the intrin
sic programming properties in the product as required in the
statement of objectives (Level 0) by the time the coding opera
tion (Level 5) has been completed - except for packaging and
publications requirements. With these exceptions. all later work
is of a verification nature. This verification of the product pro
vides no contribution to the product during the essential develop
ment (Levels 1 to 5); it only adds error detection and elimina
tion (frequently at one half of the development cost). 10, II' and
12 inspections were developed to measure and influence intrinsic
quality (error content) in the early levels, where error rework
can be most economically accomplished. NaturallY, the benefi
cial effect on quality is also felt in later operations of the de
velopment process and at the end user's site.

An improvement in productivity is the most immediate effect of
purging errors from the product by the 10, 11' and 12 inspections.
This purging allows rework of these errors very near their ori
gin, early in the process. Rework done at these levels is 10 to
100 times less expensive than if it is done in the last half of the
process. Since rework detracts from productive effort, it reduces
productivity in proportion to the time taken to accomplish the
rework. It follows, then, that finding errors by inspection and
reworking them earlier in the process reduces the overall rework
time and increases productivity even within the early operations
and even more over the total process. Since less errors ship with
the product, the time taken for the user to install programs is
less, and his productivity is also increased.

The quality of documentation that describes the program is of as
much importance as the program itself for poor quality can mis
lead the user, causing him to make errors quite as important as
errors in the program. For this reason, the quality of program
documentation is verified by publications inspections (Plo' PI!,
and PI2). Through a reduction of user-encountered errors, these
inspections also have the effect of improving user productivity
by reducing his rework time.

www.manaraa.com

308

Figure 2 A study of coding productivity

DESIGN

'DETECTION

• NET CODING PRODUCTIVITT -------------------- ~3~rr=I00~
I, + 12 +)(- 123% ==~ __ SAMPLE SHOWED 23% NET INCREASE

I, +)(+)(-112% ~122%INPOSTSTUDYSAMPLEFROMNORMAL
)(+)(+ X _ 100% PRODUCTION (TO NORMALIZE FOR HAWTHORNE EFFECT)

• NET SAVINGS (PROGRAMMER HOURS/K) DUE TO,

1,,94 • .12,51.1., - 20

• REWORK (PROGRAMMER/HOURS/K. LOC) FROM,

",78. 12,36. -

• QUALITY

:GI~~~~11~~:f0MTHtE~·mt~~i~E~R~~:N:'r~~ l;~~l WALK·THROUGH SAMPLE DURING EQUIVALENT TEST-

A study of coding productivity

A piece of the design of a large operating system componeJllt (Ca'll
done in structured programming) was selected as a stud;y:sample
(Figure 2). The sample was judged to be of moderate complexi
ty. When the piece of design had been reduced to a level of de
tail sufficient to meet the Design Level 4 exit criteria:! (a level of
detail of design at which one design statement would ultimately
appear as three to 10 code instructions), it was submitted to a
design-complete inspection (100 percent), II. On conclusion of
II' all error rework resulting from the inspection was completed.
and the design was submitted for coding in pUS. The coding was
then done, and when the code was brought to the level of the
first clean compilation,2 it was subjected to a code inspection
(100 percent). 12 • The resultant rework was completed and the
code was subjected to unit test. After unit test, a unit test
inspection, 13, was done to see that the unit test plan had been
fully executed. Some rework was required and the necessary
changes were made. This step completed the coding operation.
The study sample was then passed on to later process opera
tions consisting of building and testing.

inspection The inspection sample was considered of sufficient size and na
sample ture to be representative for study purposes. Three programmers

www.manaraa.com

309

designed it, and it was coded by 13 programmers. The inspection
sample was in modular form, was structured, and was judged to
be of moderate complexity on average.

Because errors were identified and corrected in groups at II and
12, rather than found one-by-one during subsequent work and
handled at the higher cost incumbent in later rework, the over
all amount of error rework was minimized, even within the cod
ing operation. Expressed differently, considering the indusion of
all II time, 12 tim~, and resulting error rework time (with the
usual coding and unit test time in the total time to complete the
operation), a net saving resulted when this figure was compared
to the no-inspection case. This net saving translated into a 23
percent increase in the productivity of the coding operation
alone. Productivity in later levels was also increased because
there was less error rework in these levels due to the effect of
inspections, but the increase was not measured directly.

An important aspect to consider in any production experiment
involving human beings is the Hawthorne Effect.a If this effect is
not adequately handled, it is never clear whether the effect ob
served is due to the human bias of the Hawthorne Effect or due
to the newly implemented change in process. In this case a con
trol sample was selected at random from many pieces of work
after the II and 12 inspections were accepted as commonplace.
(Previous experience without II and 12 approximated the net cod
ing productivity rate of] 00 percent datum in Figure 2.) The
difference in coding productivity between the experimental sam
ple (with I I and 12 for the first time) and the control sample was
0.9 percent. This difference is not considered significant. There
fore, the measured increase in coding productivity of 23 percent
is considered to validly accrue from the only change in the
process: addition of II and 12 inspections.

The control sample was also considered to be of representative
size and was from the same operating system component as the
study sample. It was designed by four programmers and was
coded by seven programmers. And it was considered to be of
moderate complexity on average.

Within the coding operation only, the net savings (including
inspection and rework time) in programmer hours per 1000
Non-Commentary Source Statements (K.NCSS)4 were II: 94, 12 :

51, and la: -20. As a consequence, la is no longer in effect.

coding

operation

productivity

control

sample

net

savings

www.manaraa.com

error
rework

quality

310

If personal fatigue and downtime of 15 percent are allowed in
addition to the 145 programmer hours per K.NCSS, the saving
approaches one programmer month per K.NCSS (assuming that
our sample was truly representative of the rest of the work in
the operating system component considered).

The error rework in programmer hours per K.NCSS found in this
study due to 11 was 78, and 36 for 12 (24 hours for design errors
and 12 for code errors). Time for error rework must be specifi
cally scheduled. (For scheduling purposes it is best to develop
rework hours per K.NCSS from history depending upon the par
ticular project types and environments, but figures of 20 hours
for II' and 16 hours for 12 (after the learning curve) may be suit
able to start with.)

The only comparative measure of quality obtained was a com
parison of the inspection study sample with a fully comparable
piece of the operating system component that was produced
similarly, except that walk-throughs were used in place of the 11
and 12 inspections. (Walk-throughs5 were the practice before
implementation of 11 and 12 inspections.) The process span in
which the quality comparison was made was seven months of
testing beyond unit test after which it was judged that both sam
ples had been equally exercised. The results showed the inspec
tion sample to contain 38 percent less errors than the walk
through sample.

Note that up to inspection Iq , no machine time has been used for
debugging, and so machine time savings were not mentioned.
Although substantial machine time is saved overall since there
are less errors to test for in inspected code in later stages of the
process, no actual measures were obtained.

Tobie 1 Error detection efliciency

Process Operatiolls

Design
II inspection-
Coding
I. inspection-
Unit test---
Preparation for

acceptance test
Acceptance test
Actual usage (6 mo.)
Total

Errors Found
per K.NCSS

38*

8

o
o

46

Percellt of Total
Errors Found

82

18

100

• S I 'h were logic errors. most of which were missing rather than due to incorrect design.

www.manaraa.com

311

In the development of applications, inspections also make a sig- inspections in

nificant impact. For example, an application program of eight applications

modules was written in COBOL by Aetna Corporate Data Pro- development

cessing department, Aetna Life and Casualty, Hartford, Con-
necticut, in June 1975.6 Two programmers developed the pro-
gram. The number of inspection participants ranged between
three and five. The only change introduced in the development
process was the I} and 12 inspections. The program size was
4,439 Non-Commentary Source Statements.

An automated estimating program, which is used to produce the
normal program development time estimates for all the Corpo
rate Data Processing department's projects, predicted that de
signing, coding, and unit testing this project would require 62
programmer days. In fact, the time actually taken was 46.5 pro
grammer days including inspection meeting time. The resulting
saving in programmer resources was 25 percent.

The inspections were obviously very thorough when judged by
the inspection error detection efficiency of 82 percent and the
later results during testing and usage as shown in Table 1.

The results achieved in Non-Commentary Source Statements
per Elapsed Hour are shown in Table 2. These inspection rates
are four to six times faster than for systems programming. If
these rates are generally applicable, they would have the effect
of making the inspection of applications programs much less
expensive.

Table 2 Inspection rates in
NeSS per hour

Operations

Preparation
Inspection

Inspections

I,

898
652

709
539

Inspections are a formal, efficient, and economical method of
finding errors in design and code. All instructions are addressed
at least once in the conduct of inspections. Key aspects of
inspections are exposed in the following text through describing
the I} and 12 inspection conduct and process. 10, IT}' IT2• Plo'
Pip and PI2 inspections retain the same essential properties as

www.manaraa.com

the

people

Involved

312

Table 3. Inspection process and rate of progress

Process
operations

I. Overview

2. Preparation
3. Inspection
4. Rework

5. Follow-up

Rate of progress· (loci IIr)
Design I, Code 12

500

100
130
20

hrs/K.NCSS

not
necessary

1:!5
150

16
hrs/K.NCSS

Objectil'es of
the operation

Communication
education

Education
Find errors
Rework and re-

solve errors
found by
inspection

See that all
errors. prob-
lems. and concerns
have been resolved

·These nOles apply to systems prolramminl and are conscn·ative. Comparable rates for applications pro
pamminl are much hisher. Initial schedules may be staned with these numben and as project history ,hat
is keyed to unique environments evolves. the historical data may be used for future scbedulins al,orithms.

the II and 12 inspections but differ in materials inspected, num
ber of participants, and some other minor points.

The inspection team is best served when its members play their
particular roles, assuming the particular vantage point of those
roles. These roles are described below:

1. Moderator-The key person in a successful inspection. He
must be a competent programmer but need not be a technical
expert on the program being inspected. To preserve objectivi
ty and to increase the integrity of the inspection, it is usually
advantageous to use a moderator from an unrelated project.
The moderator must manage the inspection team and offer
leadership. Hence, he must use personal sensitivity, tact, and
drive in balanced measure. His use of the strengths of team
members should produce a synergistic effect larger than their
number; in other words, Ite is tlte coach. The duties of mod
erator also include scheduling suitable meeting places, report
ing inspection results within one day, and follow-up on re
work. For best results the moderator should be specially
trained. (This training is brief but very advantageous.)

2. Designer-The programmer responsible for producing the
program design.

3. Coder/Implementor-The programmer responsible for trans
lating the design into code.

4. Tester-The programmer responsible for writing and/or exe
cuting test cases or otherwise testing the product of the de
signer and coder.

www.manaraa.com

313

If the coder of a piece of code also designed it, he will function
in the designer role for the inspection process; a coder from
some related or similar program will perform the role of the co
der. If the same person designs, codes, and tests the product
code, the coder role should be filled as described above, and
another coder - preferably with testing experience - should fill
the role of tester.

Four people constitute a good-sized inspection team, although cir
cumstances may dictate otherwise. The team size should not be
artificially increased over four, but if the subject code is involved
in a number of interfaces, the programmers of code related to
these interfaces may profitably be involved in inspection. Table 3
indicates the inspection process and rate of progress.

The total time to complete the inspection process from overview scheduling

through follow-up for II or 12 inspections with four people in- inspections

volved takes about 90 to 100 people-hours for systems program- and rework

mingo Again, these figures may be considered conservative but
they will serve as a starting point. Comparable figures for appli-
cations programming tend to be much lower, implying lower
cost per K.Ness.

Because the error detection efficiency of most inspection teams
tends to dwindle after two hours of inspection but then picks up
after a period of different activity, it is advisable to schedule
inspection sessions of no more than two hours at a time. Two
two-hour sessions per day are acceptable.

The time to do inspections and resulting rework must be sched
uled and managed with the same attention as other important
project activities. (After all, as is noted later, for one case at
least, it is possible to find approximately two thirds of the errors
reported during an inspection.) If this is not done, the immediate
work pressure has a tendency to push the inspections and/or
rework into the background, postponing them or avoiding them
altogether. The result of this short-term respite will obviously
have a much more dramatic long-term negative effect since the
finding and fixing of errors is delayed until later in the process
(and after turnover to the user). Usually, the result of postponing
early error detection is a lengthening of the overall schedule and
increased product cost.

Scheduling inspection time for modified code may be based on
the algorithms in Table 3 and on judgment.

www.manaraa.com

314

h Keeping the objective of each operation in the forefront of team
inspection activity is of paramount importance. Here is presented an out-
process line of the II inspection process operations.

1. Overview (whole team) - The designer first describes the
overall area being addressed and then the specific area he has
designed in detail-logic, paths, dependencies, etc. Documen
tation of design is distributed to all inspection participants on
conclusion of the overview. (For an 12 inspection, no over
view is necessary, but the participants should remain the
same. Preparation, inspection, and follow-up proceed as for
II but, of course, using code listings and design specifications
as inspection materials. Also, at 12 the moderator should flag
for special scrutiny those areas that were reworked since II
errors were found and other design changes made.)

2. Preparation (individual) - Participants, using the design doc
umentation, literally do their homework to try to understand
the design, its intent and logic. (Sometimes flagrant errors are
found during this operation, but in general, the number of
errors found is not nearly as high as in the inspection opera
tion.) To increase their error detection in the inspection, the
inspection team should first study the ranked distributions of
error types found by recent inspections. This study will
prompt them to concentrate on the most fruitful areas. (See
examples in Figures 3 and 4.) Checklists of clues on finding
these errors should also be studied. (See partial examples of
these lists in Figures 5 and 6 and complete examples for 10 in
Reference 1 and for I I and 12 in Reference 7.)

3. Inspection (whole team) - A "reader" chosen by the moder
ator (usually the coder) describes how he will implement the
design. He is expected to paraphrase the design as expressed
by the designer. Every piece of logic is covered at least once,
and every branch is taken at least once. All higher-level docu
mentation, high-level design specifications, logic specifica
tions, etc., and macro and control block listings at 12 must be
available and present during the inspection.

Now that the design is understood, the objectil'e is to find
errors. (Note that an error is defined as any condition that
causes malfunction or that precludes the attainment of ex
pected or previously specified results. Thus, deviations from
specifications are clearly termed errors.) The finding of er
rors is actually done during the implementor/coder's dis-

www.manaraa.com

315

Figure 3 Summary of design inspections by error type

Inspection file
VP Illdil'idlial Name Missing Wrong Extra Errors Error %

CD CB Definition 16 2 18 ~:~} 10.4 CU CB Usage 18 17 36
FS FPFS 1 I .2
IC Interconnect Calls 18 9 27 5.2
IR Interconnect Reqts 4 5 2 11 2.1
LO Logic 126 57 24 207 39.8+-
L3 Higher LvI Docu 1 1 2 .4
MA Mod Attributes 1 1 .2
MD More Detail 24 6 2 32 6.2
MN Maintainability 8 5 3 16 3.1
OT Other 15 10 10 35 6.7
PD Pass Data Areas 1 1 .2
PE Perfonnance 1 2 3 6 1.2
PR Prologue/Prose 44 38 7 89 17.1+-
RM Return Code/Msg 5 7 2 14 2.7
RU Register Usage 1 2 3 .6
ST Standards
TB Test & Branch 12 7 2 21 4.0

295 168 57 520 100.0
57% 32% 11%

Figure 4 Summary of code inspections by error type

I nspection file
VP Indil'idllal Name Missing Wrong Extra Errors Error %

CC Code Comments 5 17 1 23 6.6
CU CB Usage 3 21 1 25 7.2
DE Design Error 31 32 14 77 22.1+-
Fl 8 8 2.3
IR Interconnect Calls 7 9 3 19 5.5
LO Logic 33 49 10 92 26.4
MN Maintainability 5 7 2 14 4.0
OT Other
PE Perfonnance 3 2 5 10 2.9
PR Prologue/Prose 25 24 3 52 14.9
PU PL/S or BAL Use 4 9 1 14 4.0
RU Register Usage 4 2 6 1.7
SU Storage Usage 1 1 .3
TB Test & Branch 2 5 7 2.0

123 185 40 348 100.0

course. Questions raised are pursued only to the point at
which an error is recognized. It is noted by the moderator: its
type is classified: severity (major or minor) is identified, and
the inspection is continued. Often the solution of a problem is
obvious. If so, it is noted, but no specific solution hunting is

www.manaraa.com

316

Figure 5 Examples of who I 10 examine when looking for errors all,

I) Logic
Missing

1. Are All Constants Defined?
2. Are All Unique Values Explicitly Tested on Input Parameters?
3. Are Values Stored after They Are Calculated?
4. Are All Defaults Checked Explicitly Tested on Input Parameters?
5. If Character Strings Are Created Are They Complete. Are All Delimiters

Shown?
6. If a Keyword Has Many Unique Values. Are They All Checked?
7. If a Queue Is Being Manipulated. Can the Execution Be Interrupted; If

So. Is Queue Protected by a Locking Structure; Can Queue Be Destroyed
Over an Interrupt?

8. Are Registers Being Restored on Exits?
9. In Queuing/Dequeuing Should Any Value Be Decremented/Incremented?

10. Are All Keywords Tested in Macro?
I J. Are All Keyword Related Parameters Tested in Service Routine?
12. Are Queues Being Held in Isolation So That Subsequent Interrupting

Requestors Are Receiving Spurious Returns Regarding the Held Queue?
13. Should any Registers Be Saved on Entry?
14. Are All Increment Counts Properly Initialized (0 or I)?
Wrong

J. Are Absolutes Shown Where There Should Be Symbolics?
2. On Comparison of Two Bytes. shou1d All Bits Be Compared?
3. On Built Data Strings. Should They Be Character or Hex?
4. Are Internal Variables Unique or Confusing If Concatenated?

Extra
J. Are All Blocks Shown in Design Necessary or Are They Extraneous?

to take place during inspection. (The inspection is 110t intend
ed to redesign, evaluate alternate design solutions, or to find
solutions to errors; it is intended just to find errors!) A team
is most effective if it operates with only one objective at a
time.

Within one day of conclusion of the inspection, the modera
tor should produce a written report of the inspection and its
findings to ensure that all issues raised in the inspection will
be addressed in the rework and follow-up operations. Exam
ples of these reports are given as Figures 7 A, 7B, and 7C.

4. Rework - All errors or problems noted in the inspection re
port are resolved by the designer or coder/implementor.

5. Follow-Up-It is imperative that every issue, concern, and
error be entirely resolved at this level, or errors that result
can be 10 to 100 times more expensive to fix if found later in

www.manaraa.com

317

Figure 6 Examples of what to examine when looking for errors at 12

INSPECTION SPECIFICATION
12 Test Branch

Is Correct Condition Tested (If X = ON vs. IF X = OFF)?
Is (Are) Correct Variable(s) Used for Test
(If X = ON vs. If Y = ON)?
Are Null THENs/ELSEs Included as Appropriate?
Is Each Branch Target Correct?
Is the Most Frequently Exercised Test Leg the THEN Clause?

12 Interconnection (or Linkage) Calls
For Each Interconnection Call to Either a Macro. SVC or Another Module:
Are All Required Parameters Passed Set Correctly?
If Register Parameters Are Used. Is the Correct Register Number Specified?
If Interconnection Is a Macro.
Does the Inline Expansion Contain All Required Code?
No Register or Storage Conflicts between Macro and Calling Module?
If the Interconnection Returns. Do All Returned Parameters Get Processed
Correctly?

the process (programmer time only, machine time not
included). It is the responsibility of the moderator to see that
all issues, problems, and concerns discovered in the inspec
tion operation have been resolved by the designer in the case
of 11' or the coder/implementor for 12 inspections. If more
than five percent of the material has been reworked, the team
should reconvene and carry out a 100 percent reinspection.
Where less than five percent of the material has been re
worked, the moderator at his discretion may verify the qual
ity of the rework himself or reconvene the team to reinspect
either the complete work or just the rework.

In Operation 3 above, it is one thing to direct people to find er
rors in design or code. It is quite another problem for them to
find errors. Numerous experiences have shown that people have
to be taught or prompted to find errors effectively. Therefore, it
is prudent to condition them to seek the high-occurrence, high
cost error types (see example in Figures 3 and 4), and then de
scribe the clues that usually betray the presence of each error
type (see examples in Figures 5 and 6).

One approach to getting started may be to make a preliminary
inspection of a design or code that is felt to be representative of
the program to be inspected. Obtain a suitable quantity of errors,
and analyze them by type and origin, cause, and salient indicative
clues. With this information, an inspection specification may be
constructed. This specification can be amended and improved in

commencing

inspections

www.manaraa.com

318

Figure 7A Error list

I. PR/M/MIN

2. DA/W/MAJ
3. PU/W/MAJ

4. LO/W/MAJ

5. LO/W/MAJ

6. PU/E/MIN

Line 3: the statement of the prologue in the REMARKS
section needs expansion.

Line 123: ERR-RECORD-TYPE is out of sequence.
Line 147: the wrong bytes of an 8-byte field (current-data)

are moved into the 2-byte field (this year).
Line 169: while counting the number of leading spaces in

NAME, the wrong variable (I) is used to calcu
late "J".

Line 172: NAME-CHECK is PERFORMED one time too
few.

Line 175: In NAME-CHECK, the check for SPACE is re
dundant.

7. DE/W/MIN Line 175: the design should allow for the occurrence of a
period in a last name.

Figure 7B Example of module detail report

CODE INSPECTION REPORT

MODULE DETAIL

DATE"-____ _

MOD/MAC, __ C~H!!:E~CK~E:!!R _________ SUBCOMPONENTIAPPLICATlON' _______ _

PROBLEM TYPE,

AND BRANCH
LO, LOGIC
TB, TEST
EL, EXTER
RU, REGIS
SU, STOR
DA, DATA
PU, PROG
PE, PERFO
MN, MAIN

DE, DESIG
PR, PROL

CC, CODE
OT, OTHE

NAL LlNKAGE~
TER USAGE

AGE USAGE
AREA USAGE

RAM LANGUAGE
RMANCE

TAINABILITY
'I ERROR

OGUE
COMMENTS

R

I
I ,
,

I
I

TOT~

REINSPECTION REQUIRED?_..!.y _________ _

M !
I

:
;

:
I

!

SEE NOTE BELOW

MAJOR" MINOR

w E M W

9 1

2
2

1

1
1

13 5

•• PIitCILEM WHICH WOULD CAUSE THE I"ROORAM TO MAL' UNCTION: A lUG. WI - MISSING. W _ wttONG. E • UTRA.

E

1

NOT£. !"OR MODIfiED MODULU, ~UM' IN THE CHANGED !"ORllCN VERSUS PROIIU:US IN THE loUE SHOULD IE SHOWN IN THIS MANNER . .k21. WHERE 3
IS THE NUMBER Of' PROBLE". IN THE CHANGED PORTION AND 2 IS THE NUMBER Of: ,..rt(I8L'VS IN TM! lASE

light of new experience and serve as an on-going directive to
focus the attention and conduct of inspection teams. The objec
tive of an inspection specification is to help maximize and make
more consistent the error detection efficiency of inspections
where

www.manaraa.com

319

Figure 7C Example of code inspection summary report

CODE INSPECTION REPORT
SUMMARY Oate 11120/-

To, Design Manager· ___ .!!K!!!RA~U~SS~=:::::-_Development Manage'· __ --':G""'�O'-':TT::c� ____ _
Subject: Inspection Report for ___ C~H!::EC!e!!K~ER~ ___ lnspection date __ -'I:.:.I....:1;:..9._-____ _

SystemJApplication, _________ Release _______ Builld..d ---

Component Subcomponents(s)

ELOC Inspection
Full Added. Modified, Deleted People-nours rx.X)

New or Pre-insp Esl Posl Rework , I, Insp iRe. ·Follow· Mod/Mac or Part Sub-
Name Mod Insp. Programmer Tester A M 0 A M 0 A M 0 Prep Meetg Iwork' up componen

N McGINLEY HALE 348 0 50 9.0 . 8.8 8.0 1.5 ,
: ,
I

Totals !

Reinspectlon required? YES Length of inspection (clock hours and tenths)_-'2""2~ ______ _

Reinspeclion by ((Cd~al~e)LI1~/2~5/~-=Ad~d~~ion:.~1 m:od~u:le~s/:ma:c:ros~?~N~D==~=========
OCR #'s written_ C·2
Problem summary: Major 13 Minor 5 Total_-=1:.8 ________ _

E~~~~~hanged code: Major----MlnO~-CGI-NL~~ors in base code: MajOr_M~~~~--------

Initial Desr Detailed Or Programmer Team Leader Other fJ.oderato,'s Signature

Error detection efficiency

Errors found by an inspection 100
Total errors in the product before inspection x

The reporting forms and form completion instructions shown in
the Appendix may be used for II and 12 inspections. Although
these forms were constructed for use in systems programming
development, they may be used for applications programming
development with minor modification to suit particular environ
ments.

The moderator will make hand-written notes recording errors
found during inspection meetings. He will categorize the errors
and then transcribe counts of the errors, by type, to the module
detail form. By maintaining cumulative totals of the counts by
error type, and dividing by the number of projected executable
source lines of code inspected to date, he will be able to estab
lish installation averages within a short time.

Figures 7 A, 7B, and 7C are an example of a set of code inspec
tion reports. Figure 7 A is a partial list of errors found in code
inspection. Notice that errors are described in detail and are
classified by error type, whether due to something being missing,
wrong, or extra as the cause, and according to major or minor
severity. Figure 7B is a module level summary of the errors con
tained in the entire error list represented by Figure 7 A. The
code inspection summary report in Figure 7C is a summary of

reporting

inspection

results

www.manaraa.com

inspections

and
languages

320

inspection results obtained on all modules inspected in a particu
lar inspection session or in a subcomponent or application.

Inspections have been successfully applied to designs that are
specified in English prose, flowcharts, HIPO, (Hierarchy plus
Input-Process-Output) and PIDGEON (an English prose-like
meta language).

The first code inspections were conducted on PL/S and Assem
bler. Now, prompting checklists for inspections of Assembler,
COBOL, FORTRAN, and PL/l code are available.7

personnel One of the most significant benefits of inspections is the detailed
considerations feedback of results on a relatively real-time basis. The program

mer finds out what error types he is most prone to make and
their quantity and how to find them. This feedback takes place
within a few days of writing the program. Because he gets early
indications from the first few units of his work inspected, he is
able to show improvement, and usually does, on later work even
during the same project. In this way, feedback of results from
inspections must be counted for the programmer's use and bene
fit: they should not under any circumstances be llsed for pro
grammer performance appraisal.

Skeptics may argue that once inspection results are obtained,
they will or even must count in performance appraisals, or at
least cause strong bias in the appraisal process. The author can
offer in response that inspections have been conducted over the
past three years involving diverse projects and locations,
hundreds of experienced programmers and tens of managers,
and so far he has found no case in which inspection results have
been used negatively against programmers. Evidently no man
ager has tried to "kill the goose that lays the golden eggs."

A pre inspection opinion of some programmers is that they do
not see the value of inspections because they have managed
very well up to now, or because their projects are too small or
somehow different. This opinion usually changes after a few
inspections to a position of acceptance. The quality of accep
tance is related to the success of the inspections they have expe
rienced, the conduct of the trained moderator, and the attitude
demonstrated by management. The acceptance of inspections
by programmers and managers as a beneficial step in making
programs is well-established amongst those who have tried
them.

www.manaraa.com

321

Process control using inspection and testing results

Obviously, the range of analysis possible using inspection re
sults is enormous. Therefore, only a few aspects will be treated
here, and they are elementary expositions.

A listing of either I}, 12 , or combined I} + 12 data as in Figure 8
immediately highlights which modules contained the highest
error density on inspection. If the error detection efficiency of
each of the inspections was fairly constant, the ranking of error
prone modules holds. Thus if the error detection efficiency of
inspection is 50 percent. and the inspection found 10 errors in a
module, then it can be estimated that there are 10 errors remain
ing in the module. This information can prompt many actions to
control the process. For instance, in Figure 8, it may be decided
to reinspect module "Echo" or to redesign and recode it entirely.
Or, less drastically, it may be decided to test it "harder" than
other modules and look especially for errors of the type found in
the inspections.

If a ranked distribution of error types is obtained for a group of
"error-prone modules" (Figure 9), which were produced from
the same Process A, for example, it is a short step to comparing
this distribution with a "Normal/Usual Percentage Distribu
tion." Large disparities between the sample and "standard" will
lead to questions on why Process A, say, yields nearly twice as
many internal interconnection errors as the "standard" process.
If this analysis is done promptly on the first five percent of pro
duction, it may be possible to remedy the problem (if it is a
problem) on the remaining 95 percent of modules for a particu
lar shipment. Provision can be made to test the first five percent
of the modules to remove the unusually high incidence of inter
nal interconnection problems.

Analysis of the testing results, commencing as soon as testing
errors are evident, is a vital step in controlling the process since
future testing can be guided by early results.

Where testing reveals excessively error-prone code, it may be
more economical and saving of schedule to select the most
error-prone code and inspect it before continuing testing. (The
business case will likely differ from project to project and case
to case, but in many instances inspection will be indicated). The
selection of the most error-prone code may be made with two
considerations uppermost:

most

error-prone

modules

distribution of

error types

inspecting

error-prone

code

www.manaraa.com

322

Figure 8 Example of most error·prone modules based on I, and 12

Number of Error dellsit)'.
Module lIame errors Lines of code Errors/K. Loe

Echo 4 128 31
Zulu 10 323 31
Foxtrot 3 71 28
Alpha 7 264 27+-Average
Lima 2 106 19 Error
Delta 3 195 15 Rate

-
67

Figure 9 Example of distribution of error types

Number of Normal/usual
errors % distribution. %

Logic 23 35 44
Interconnection/Linkage 21 31 '? 18

(Internal)
Control Blocks 6 9 13

8 10
7 7
6 6
4 ~

100% 100%

I. Which modules head a ranked list when the modules are rated
by test errors per K.NCSS?

2. In the parts of the program in which test coverage is low,
which modules or parts of modules are most suspect based
on (11 + 12) errors per K.NCSS and programmer judgment?

From a condensed table of ranked "most error-prone" modules,
a selection of modules to be inspected (or reinspected) may be
made. Knowledge of the error types already found in these
modules will better prepare an inspection team.

The reinspection itself should conform with the I% process, ex
cept that an overview may be necessary if the original overview
was held too long ago or if new project members are involved.

www.manaraa.com

323

Inspections and walk-throughs

Walk-throughs (or walk-thrus) are practiced in many different
ways in different places, with varying regularity and thorough
ness. This inconsistency causes the results of walk-throughs to
vary widely and to be nonrepeatable. Inspections. however, hav
ing an established process and a formal procedure. tend to vary
less and produce more repeatable results. Because of the varia
tion in walk-throughs, a comparison between them and inspec
tions is not simple. However, from Reference 8 and the walk
through procedures witnessed by the author and described to
him by walk-through participants, as well as the inspection
process described previously and in References 1 and 9, the
comparison in Tables 4 and 5 is drawn.

Figure lOA describes the process in which a walk-through is effects on

applied. Clearly, the purging of errors from the product as it development

passes through the walk-through between Operations 1 and 2 is process
very beneficial to the product. In Figure lOB, the inspection
process (and its feedback, feed-forward, and self-improvement)
replaces the walk-through. The notes on the figure are self-ex-
planatory.

Inspections are also an excellent means of measuring complete
ness of work against the exit criteria which must be satisfied to
complete project checkpoints. (Each checkpoint should have a
clearly defined set of exit criteria. Without exit criteria, a check
point is too negotiable to be useful for process control).

Inspections and process management

The most marked effects of inspections on the development pro
cess is to change the old adage that, "design is not complete un
til testing is completed," to a position where a very great deal
must be known about the design before even the coding is be
gun. Although great discretion is still required in code implemen
tation, more predictability and improvements in schedule, cost,
and quality accrue. The old adage still holds true if one regards
inspection as much a means of verification as testing.

Observations in one case in systems programming show that percent of

approximately two thirds of all errors reported during develop- errors found
ment are found by 1\ and 12 inspections prior to machine testing.

www.manaraa.com

324

Table 4. Inspection and walk-through processes and obiectives

Inspection

Process Operations Objectives

I. Overview Education
(Group)

2. Preparation Education
(Individual)

3. Inspection Find errors!
(Group)

4. Rework Fix problems

5. Follow-up Ensure all
fixes
correctly
installed

Walk-through

Process Operations Objectives

1. Preparation Education
(Individual)

2. Walk-through Education
(Group)

Discuss
design
alternatives

Find errors

Note the separation of objectives in the inspection process.

Table 5 Comparison of key properties of inspectians and walk-throughs

Properties Inspection Walk-Through

I. Formal moderator training Yes No
2. Definite participant roles Yes No
3. Who "drives" the inspection Moderator Owner of

or walk-through material
(Designer or
coder)

4. Use "How To Find Errors" Yes No
checklists

5. Use distribution of error Yes No
types to look for

6. Follow-up to reduce bad fixes Yes No
7. Less future errors because of Yes Incidental

detailed error feedback to
individual programmer

8. Improve inspection efficiency Yes No
from analysis of results

9. Analysis of data -+ process Yes No
problems -+ improvements

The error detection efficiencies of the II and 12 inspections sepa
rately are, of course, less than 66 percent. A similar observation
of an application program development indicated an 82 percent
find (Table 1). As more is learned and the error detection effi
ciency of inspection is increased, the burden of debugging on
testing operations will be reduced, and testing will be more able
to fulfill its prime objective of verifying quality.

www.manaraa.com

325

Figure 10 (A) Walk.through process, (a) Inspection process

RESULT: ONE·TIME IMPROVEMENT DUE TO ERROR REMOVAL IN PROPORTION TO ERROR DETECTION EFFICIENCY OF WALK·
THROUGH

• FIX PROCESS HOLES

• FIX SHORT TERM PROBLEMS

• ERROR FEEDBACK FOR
LEARNING EACH / ALL
PROGRAMMERS

• SPECIAL REWORK
OR REWRITE
RECOMMENDATIONS

FEED·BACK

(A)

o LEARNING INPUT FOR
INSPECTORS AND
MODERATORS

o WHAT ERROR TYPES TO
LOOK FOR

o BETTER WAYS TO
FIND EACH ERROR TYPE

o DETAIL ERROR
FOLLOW·UP

o NUMBER OF ERRORS/
INSPECTION HOUR

o NUMBER OF LOC
INSPECTIONS/HOUR

(B)

• ERROR PRONE
MODULES
-RANKED

• ERROR TYPES
DISTRIBUTION
-RANKED

• NUMBER OF ERRORS /
K. LOC COMPARED TO
AVERAGE

FEED·FORWARD

FOR
SPECIAL

ATTENTION

RESULTS: ONE TIME IMPROVEMENT
+ ITERATIVE IMPROVEMENT
DUE TO IMPROVEMENTS IN
OPERATION I. I. ANO OPERATION 2
ENABLED BY ANALYZED
FEED·BACK/FORWARD +
ERROR DETECTION EFFICIENCY
IMPROVED FOR REASONS
SHOWN AS (0

Comparing the "old" and "new" (with inspections) approaches
to process management in Figure 11, we can see clearly that
with the use of inspection results, error rework (which is a very
significant variable in product cost) tends to be managed more
during the first half of the schedule. This results in much lower
cost than in the "old" approach, where the cost of error rework
was 10 to 100 times higher and was accomplished in large part
during the last half of the schedule.

Inserting the 11 and 12 checkpoints in the development process
enables assessment of project completeness and quality to be
made early in the process (during the first half of the project in
stead of the latter half of the schedule, when recovery may be
impossible without adjustments in schedule and cost). Since in
dividually trackable modules of reasonably well-known size can

effect on

cost and

schedule

process

tracking

www.manaraa.com

effect on

product

knowledge

326

Fig ure 11 Effect of inspection on process management

OlD APPROACH

DESIGN

CODE

TEST

fiRST QUANTITATIVE INDICATION
Of QUALITY-fROM TEST RESULTS

1------SCHEDULE---------------t

NEW APPROACH

DESIGN

I
10 11 12

~

CODE

r~~~~~~~~~'g~1TY

I ~C:===:::::::j
I I I

TEST

STILL GET TEST RESULTS

APPROXIMATE ~E &f PRcxlRAMMER fiX TIME/PROBLEM

I I I .J
1.5 I 1.5 Ivl60 100

• POINT Of MANAGEMENT CONTROL OVER QUALITY IS MOVED UP MUCH EARLIER IN SCHEDULE .

• ERROR REWORK AT THIS LEVEL IS 1/10 AS EXPENSIVE.

==>SHIP/CUT OVER

be counted as they pass through each of these checkpoints, the
percentage completion of the project against schedule can be
continuously and easily tracked.

The overview, preparation, and inspection sequence ofthe oper
ations of the inspection process give the inspection participants

. a high degree of product knowledge in a very short time. This
important side benefit results in the participants being able to
handle later development and testing with more certainty and
less false starts. Naturally, this also contributes to productivity
improvement.

An interesting sidelight is that because designers are asked at
pre-II inspection time for estimates of the number of lines of
code (NeSS) that their designs will create, and they are present
to count for themselves the actual lines of code at the 12 inspec
tion, the accuracy of design estimates has shown substantial
improvement.

For this reason, an inspection is frequently a required event
where responsibility for design or code is being transferred from

www.manaraa.com

327

one programmer to another. The complete inspection team is
convened for such an inspection. (One-on-one reviews such as
desk debugging are certainly worthwhile but do not approach
the effectiveness of formal inspection.) Usually the side benefit
of finding errors more than justifies the transfer inspection.

Code that is changed in, or inserted in, an existing module either
in replacement of deleted code or simply inserted in the module
is considered modified code. By this definition, a very large part
of programming effort is devoted to modifying code. (The addi
tion of entirely new modules to a system count as new, not mod
ified, code.)

Some observations of errors per K.NCSS of modified code show
its error rate to be considerably higher than is found in new
code; (i.e., if lO.NCSS are replaced in a lOO.NCSS module and
errors against the lO.NCSS are counted, the error rate is de
scribed as number of errors per IO.NCSS, not number of errors
per IOO.NCSS). Obviously, if the number of errors in modified
code are used to derive an error rate per K.NCSS for the whole
module that was modified, this rate would be largely dependent
upon the percentage of the module that is modified: this would
provide a meaningless ratio. A useful measure is the number of
errors per K.NCSS (modified) in which the higher error rates
have been observed.

Since most modifications are small (e.g., I to 25 instructions),
they are often erroneously regarded as trivially simple and are
handled accordingly; the error rate goes up, and control is lost.
In the author's experience, all modifications are well worth in
specting from an economic and a quality standpoint. A con
venient method of handling changes is to group them to a mod
ule or set of modules and convene the inspection team to inspect
as many changes as possible. But all changes must be inspected!

Inspections of modifications can range from inspecting the modi
fied instructions and the surrounding instructions connecting it
with its host module, to an inspection of the entire module. The
choice of extent of inspection coverage is dependent upon the
percentage of modification, pervasiveness of the modification, etc.

inspecting

modified

code

A very serious problem is the inclusion in the product of bad bad

fixes. Human tendency is to consider the "fix," or correction, to fixes

a problem to be error-free itself. Unfortunately, this is all too
frequently untrue in the case of fixes to errors found by inspec-
tions and by testing. The inspection process clearly has an oper-

www.manaraa.com

328

ation called Follow-Up to try and minimize the bad-fix problem,
but the fix process of testing errors very rarely requires scrutiny
of fix quality before the fix is inserted. Then, if the fix is bad, the
whole elaborate process of going from source fix to link edit, to
test the fix, to regression test must be repeated at needlessly
high cost. The number of bad fixes can be economically reduced
by some simple inspection after clean compilation of the fix.

Summary

We can summarize the discussion of design and code inspec
tions and process control in developing programs as follows:

1. Describe the program development process in terms of opera
tions, and define exit criteria which must be satisfied for com
pletion of each operation.

2. Separate the objectives of the inspection process operations
to keep the inspection team focused on one objective at a
time:
Operation
Overview
Preparation
Inspection
Rework
Follow-up

Objective
Communications/education
Education
Find errors
Fix errors
Ensure all fixes are applied

correctly
3. Classify errors by type, and rank frequency of occurrence of

types. Identify which types to spend most time looking for in
the inspection.

4. Describe how to look for presence of error types.
5. Analyze inspection results and use for constant process im

provement (until process averages are reached and then use
for process control).

Some applications of inspections include function level inspec
tions 10, design-complete inspections 11' code inspections 12, test
plan inspections ITI' test case inspections IT2, interconnections
inspections IF, inspection of fixes/changes, inspection of publi
cations, etc., and post testing inspection. Inspections can be ap
plied to the development of system control programs, applica
tions programs, and microcode in hardware.

We can conclude from experience that inspections increase pro
ductivity and improve final program quality. Furthermore, im
provements in process control and project management are en
abled by inspections.

www.manaraa.com

329

ACKNOWLEDGMENTS

The author acknowledges, with thanks, the work of Mr. O. R.
Kohli and Mr. R. A. Radice, who made considerable contribu
tions in the development of inspection techniques applied to
program design and code, and Mr. R. R. Larson, who adapted
inspections to program testing.

CITED REFERENCES AND FOOTNOTES

I. o. R. Kohli, High-Level Design Inspection Specification, Technical Report
TR 21.601, IBM Corporation, Kingston, New York (July 21, 1975).

2. It should be noted that the exit criteria for II (design complete where one
design statement is estimated to represent 3 to 10 code instructions) and 12
(first clean code compilations) are checkpoints in the development process
through which every programming project must pass.

3. The Hawthorne Effect is a psychological phenomenon usually experienced
in human-involved productivity studies. The effect is manifested by partici
pants producing above normal because they know they are being studied.

4. NCSS (Non-Commentary Source Statements), also referred to as "Lines of
Code," are the sum of executable code instructions and declaratives. In
structions that invoke macros are counted once only. Expanded macroin
structions are also counted only once. Comments are not included.

5. Basically in a walk-through, program design or code is reviewed by a group
of people gathered together at a structured meeting in which errors/issues
pertaining to the material and proposed by the participants may be discussed
in an effort to find errors. The group may consist of various participants but
always includes the originator of the material being reviewed who usually
plans the meeting and is responsible for correcting the errors. How it differs
from an inspection is pointed out in Tables 2 and 3.

6. Marketing Newsletter, Cross Application Systems Marketing, "Program in
spections at Aetna," MS-76-006, S2. IBM Corporation, Data Processing
Division, White Plains, New York (March 29, 1976).

7. J. Ascoly, M. J. Cafferty, S. J. Gruen, and O. R. Kohli, Code Inspection
Specification, Technical Report TR 21.630, IBM Corporation, Kingston,
New York (1976).

8. N. S. Waldstein, The Walk-Thru-A Method of Specification. Design and
Re\'iew, Technical Report TR 00.2536, IBM Corporation, Poughkeepsie,
New York (June 4,1974).

9. Independent study programs: IBM Structured Programming Textbook,
SR20-7149-1, IBM Structured Programming Workbook, SR20-7 1 50-0,
IBM Corporation, Data Processing Division, White Plains, New York.

GENERAL REFERENCES

I. J. D. Aron, The Program Del'elopment Process: Part I: The Individual Pro
grammer, Structured Programs, 137-141, Addison-Wesley Publishing Co.,
Reading, Massachusetts (1974).

2. M. E. Fagan, Design and Code Inspections and Process Control in the De
velopment of Programs, Technical Report TR 00.2763, IBM Corporation,
Poughkeepsie, New York (June 10, 1976). This report is a revision of the
author's Design and Code Inspections and Process Control in the De~·elop
ment of Programs, Technical Report TR 21.572, IBM Corporation, Kingston,
New York (December 17, 1974).

www.manaraa.com

330

3. O. R. Kohli and R. A. Radice. Low-Level Design Inspection Specification.
Technical Report TR 21.629. IBM Corporation. Kingston, New York (I97f!J.

4. R. R. Larson, Test Plan alld Test Case Inspection Specifications, Technical
Report TR 21.586. IBM Corporation, Kingston, New York (April 4, 1975).

Appendix: Reporting forms and form completion
instructions

Instructions for Completing Design Inspection Module Detail
Form

This form (Figure 12) should be completed for each module/
macro that has valid problems against it. The problem-type
information gathered in this report is important because a histo
ry of problem-type experience points out high-occurrence types.
This knowledge can then be conveyed to inspectors so that they
can concentrate on seeking the higher-occurrence types of prob
lems.

Figure 12 Design inspection module detail form

DETAILED DESIGN INSPECTION REPORT

MODULE DETAIL

DATE _____ _

MOD!MAC, ____________ SUBCOMPONENT/APPLICATIDNI _______ _

PROBLEM TYPE,

AND BRANC

L(}' LOGIC

TS, TEST

!lAo DATA

RM, RETU

RU, REGI

MA, MOD

E~ EXlER

MD, MOR

ST, STAN

PR, PROL

HL, HIGH

US, USER

MN, MAIN

PE, PERF

OT, OTHE

AREA USAGE

RN CODES/MESSAGES

STER USAGE

ULE ATTRIBUTES

NAL LINKAGES

E DETAIL

DARDS

OGUE DR PROSE

ER LEVEL DESIGN DOC.

SPEC.

TAINABILITY

ORMANCE

R

TOTAL,

REINSPECTION REQUIRED? __________ _

SEE NOTE BELOW

MAJOR' MINOR

M W E M W

-AII'ItOeL£V WHICH WOULD CAUSE THE PROGRAM TO MALfUNCTION, A BUG. M .. MISSING, W _ WRONG, E _ EXTRA.

E

NOTL '0'1 MOOIFIED MODULES, PROBLEMS IN THE CHANGED PORTION VERSUS PRoeLEMS IN THE ."S£ SHOULD 8E SHOWN IN THIS MANNER. 3121. WHERE 3
IS THE NUMBER Of PROBLEMS IN THE CHANGED ,gRTION AHD 2 IS THE NU"'BER Of f'R08U.MS IN THE 8ASE.

www.manaraa.com

331

1. MOD/MAC: The module or macro name.
2. SUBCOMPONENT: The associated subcomponent.
3. PROBLEM TYPE: Summarize the number of problems by type

(logic, etc.), severity (major/minor), and by category (miss
ing, wrong, or extra). For modified modules, detail the num
ber of problems in the changed design versus the number in
the base design. (Problem types were developed in a systems
programming environment. Appropriate changes, if desired,
could be made for application development.)

4. REINSPECTION REQUIRED?: Indicate whether the module/
macro requires a reinspection.

All valid problems found in the inspection should be listed and
attached to the report. A brief description of each problem, its
error type, and the rework time to fix it should be given (see
Figure 7 A, which describes errors in similar detail to that re
quired but is at a coding level).

Instructions for Completing Design Inspection Summary Form

Following are detailed· instructions for completing the form in
Figure 13.

1. TO: The report is addressed to the respective design and
development managers.

2. SUBJECT: The unit being inspected is identified.
3. MOD/MAC NAME: The name of each module and macro as it

resides on the source library.

Figure 13 Design inspection summary form

DESIGN INSPECTION REPORT
SUMMARY Oote ___ _

To: Design Manager' __________ Development Manager ________ _

Subject: Inspection Report fOf _________ lnspection date ________ _

System/Application Release _______ Build __ _
Component Subcomponents(s) _______ _

ELOC Inspection
Full Added, MOdified. Deletea People·hours (X.X.)

New or Est. Pre Est. Post ~ Rework s::r& Mod/Mac or Part Detailed
M 10 ! A I M

Insp Re- Follow- Sub-
Name Mod Insp. Designer Programmer A M 0 A 0 Prep. Meetg work up componen , I I ,

:
I
I

Totals I J 1
Reinspettion required? ____ Length of inspection (clock hours and tenths} _________ _

Reinspection by (date) Additional modules/macros? _____________ _
OCR ,;-'swritten ________________________ _

Problem summary: Major ____ Minor _____ TotaJ __________ _

Errors in changed code: Major_Minor------Errors in base code: Major_Minor ______ _

Initial Desr Detailed Or Programmer Team Leader Other Moderator's Signature

www.manaraa.com

332

4. NEW OR MOD: "N" if the module is new; "Moo if the module
is modified.

5. FULL OR PART INSP: If the module/macro is "modified,"
indicate "F" if the module/macro was fully inspected or "P"
if partially inspected.

6. DETAILED DESIGNER: and PROGRAMMER: Identification of
originators.

7. PRE-INSP EST ELOC: The estimated executable source lines
of code (added, modified, deleted). Estimate made prior to
the inspection by the designer.

S. POST-INSP EST ELOC: The estimated executable source lines
of code. Estimate made after the inspection.

9. REWORK ELOC: The estimated executable source lines of
code in rework as a result of the inspection.

10. OVERVIEW AND PREP: The number of people-hours (in
tenths of hours) spent in preparing for the overview, in the
overview meeting itself, and in preparing for the inspection
meeting.

11. INSPECTION MEETING: The number of people-hours spent
on the inspection meeting.

12. REWORK: The estimated number of people-hours spent to
fix the problems found during the inspection.

13. FOLLOW-UP: The estimated number of people-hours spent by
the moderator (and others if necessary) in verifying the cor
rectness of changes made by the author as a result of the
inspection.

14. SUBCOMPONENT: The subcomponent of which the modulel
macro is a part.

15. REINSPECTION REQUIRED?: Yes or no.
16. LENGTH OF INSPECTION: Clock hours spent in the inspec

tion meeting.
17. REINSPECTION BY (DATE): Latest acceptable date for

reinspection.
IS. ADDITIONAL MODULES/MACROS?: For these subcompo

nents, are additional modules/macros yet to be inspected?
19. DCR #'S WRITIEN: The identification of Design Change

Requests, DCR(S), written to cover problems in rework.
20. PROBLEM SUMMARY: Totals taken from Module Detail

forms(s).
21. INITIAL DESIGNER, DETAILED DESIGNER, etc.: Identifica

tion of members of the inspection team.

www.manaraa.com

333

Instructions for Completing Code Inspection Module Detail
Form

This form (Figure 14) should be completed according to the in
structions for completing the design inspection module detail
form.

Instructions for Completing Code Inspection Summary Form

This form (Figure 15) should be completed according to the in
structions for the design inspection summary form except for the
following items.
1. PROGRAMMER AND TESTER: Identifications of original par

ticipants involved with code.
2. PRE-INSP. ELOC: The noncommentary source lines of code

(added, modified, deleted). Count made prior to the inspection
by the programmer.

3. POST-INSP EST ELOC: The estimated noncommentary source
lines of code. Estimate made after the inspection.

Figure 14 Code inspection module detail form

DATt..F _____ _

CODE INSPECTION REPORT

MODULE DETAIL

MODIMAC,------------~SUBCOMPONENTIAPPLICATION--------

PROBLEM TYPE,

AND BRANC

LO, LOGIC

TB, TEST

EL, EXTER

RU, REGIS

SU, STORA

DA, DATA

PU, PROG

PE, PERFO

MN, MAIN

DE, DESIG

PR, PROLO

CC, CODE

OT, OTHER

NAL lINKAGE<

TER USAGE

GE USAGE

AREA USAGE

RAM LANGUAGE

RMANCE

TAINABILITY

N ERROR

GUE

COMMENTS

TOTAL,

REINSPECTION REQUIRED? _________ _

SEE NOTE BELOW

MAJOR· MINOR

M W E M I W E

I
i

I

I

i

I

i
~

~ ,

www.manaraa.com

334

Figure 15 Code inspection summary form

CODE INSPECTION REPORT
SUMMARY Oate _____ _

To: Design Manager _____________ Oevelopment Manager'--__________ _
Subject: Inspection Report for ____________ lnspection date' ___________ _

System/Application ____________ Release' _________ Build"-__ _

Component Subcomponents(s)

ElOC Inspection
Full Added, Modified, Deleted People-hours (X.X)

New or Pre-insp Est Post Rework
Mod/Mac or Part Insp Re- Follow- Sub·

Name Mod Insp. Programmer Tester. A M 0 A M 0 A M 0 Prep Meetg work up compone"

,
;
,

Totals

Reinspection required? _____ ilength of inspection (clock hours and tenths) ____________ _
Reinspection by (date) Additional moclules/macros? _________________ _
OCR #'swritten ________________________________ _

Problem summary: Major Minor 10t81 _____________ _

Errors in changed code: Major-----Minor __ Errors in base code: Major __ Minor _________ _

Initial Desr Detailed Dr Programmer Team Leader Other Moderator's Signature

4. REWORK ELOC: The estimated noncommentary source lines
of code in rework as a result of -the inspection.

5. PREP: The number of people hours (in tenths of hours) spent
in preparing for the inspection meeting.

Reprint Order No. G321-5033.

www.manaraa.com

Michael Fagan
Advances in Software Inspections

IEEE Transactions on Software Engineering, Vol. SE-12 (7),
1986

pp.744-751

www.manaraa.com

Advances in Software Inspections
MICHAEL E. FAGAN, MEMBER, IEEE

Manuscript received September 30, 1985.
The·author is with the mM Thomas J. Watson Research Center, York

town Heights, NY 10598.
IEEE Log Number 8608192.

Abstract-This paper presents new studies and experiences that en
hance the use of the inspection process and improve its contribution to
development of defect-free software on time and at lower costs. Ex
amples of benefits are cited followed by descriptions of the process and
some methods of obtaining the enhanced results.

Software inspection is a method of static testing to verify that soft
ware meets its requirements. It engages the developers and others in a
formal process of investigation that usually detects more defects in the
product-and at lower cost-than does machine testing. Users of the
method report very significant improvements in quality that are ac
companied by lower development costs and greatly reduced mainte
nance efforts. Excellent results have been obtained by small and large
organizations in all aspects of new development as well as in mainte
nance. There is some evidence that developers who participate in the
inspection of their own product actually create fewer defects in future
work. Because inspections formalize the development process, produc
tivity and quality enhancing tools can be adopted more easily and rap
idly.

Index Terms-Defect detection, inspection, project management,
quality assurance, software development, software engineering, soft
ware quality, testing, walkthru.

INTRODUCTION

THE software inspection process was created in 1972,
in mM Kingston, NY, for the dual purposes of im

proving software quality and increasing programmer pro
ductivity. Its accelerating rate of adoption throughout the
software development and maintenance industry is an ac-

www.manaraa.com

338

knowledgment of its effectiveness in meeting its goals.
Outlined in this paper are some enhancements to the in
spection process, and the experiences of some of the many
companies and organizations that have contributed to its
evolution. The author is indebted to and thanks the many
people who have given their help so liberally.

Because of the clear structure the inspection process has
brought to the development process, it has enabled study
of both itself and the conduct of development. The latter
has enabled process control to be applied from the point
at which the requirements are inspected-a much earlier
point in the process than ever before-and throughout de
velopment. Inspections provide data on the performance
of individual development operations, thus providing a
unique opportunity to evaluate new tools and techniques.
At the same time, studies of inspections have isolated and
fostered improvement of its key characteristics such that
very high defect detection efficiency inspections may now
be conducted routinely. This simultaneous study of de·
velopment and design and code inspections prompted the
adaptation of the principles of the inspection process to
inspections of requirements, user information, and docu
mentation, and test plans and test cases. In each instance,
the new uses of inspection were found to improve product
quality and to be cost effective, i.e., it saved more than it
cost. Thus, as the effectiveness of inspections are improv
ing, they are being applied in many new and different ways
to improve software quality and reduce costs.

BENEFITS: DEFECT REDUCTION, DEFECT PREVENTION,

AND COST IMPROVEMENT

In March 1984, while addressing the IBM SHARE User
Group on software service, L. H. Fenton, IBM Director
of VM Programming Systems, made an important state
ment on quality improvement due to inspections [1]:

www.manaraa.com

339

"Our goal is to provide defect free products and
product infonnation, and we believe the best way to
do this is by refining and enhancing our existing
software development process.

Since we introduced the inspection process in
1974, we have achieved significant improvements in
quality. mM has nearly doubled the number of lines
of code shipped for System/370 software products
since 1976, while the number of defects per thou
sand lines of code has been reduced by two-thirds.
Feedback from early MVS/XA and VM/SP Release
3 users indicates these products met and, in many
cases, exceeded our ever increasing quality expec
tations. "

Observation of a small sample of programmers sug
gested that early experience gained from inspections
caused programmers to reduce the number of defects that
were injected.in the design and code of programs created
later during the same project [3]. Preliminary analysis of
a much larger study of data from recent inspections is pro
viding similar results.

It should be noted that the improvements reported by
mM were made while many of the enhancements to in
spections that are mentioned here were being developed.
As these improvements are incorporated into everyday
practice, it is probable that inspections will help bring fur
ther reductions in defect injection and detection rates .

. Additional reports showing that inspections improve
quality and reduce costs follow. (In all these cases, the
cost of inspections is included in project cost. Typically,
all design and code inspection costs amount to 15 percent
of project cost.)

www.manaraa.com

340

AETNA Life and Casualty.
4439 LOC [2]

IBM RESPOND, U.K.
6271 LOC [3]

Standard Bank of South Af
rica. 143 000 LOC [4]

American Express,
System code). 13 000 LOC

-0 Defects in use.
-25 percent reduction in

development resource.
-0 Defects in use.
-9 percent reduction In

cost compared to
walkthrus.

-0.15 Defects/KLOC in
use.

-95 percent reduction in
corrective maintenance
cost.

-0.3 Defects in use.

In the AETNA and mM examples, inspections found 82
and 93 percent, respectively, of all defects (that would
cause malfunction) detected over the life cycle of the
products. The other two cases each found over 50 percent
of all defects by inspection. While the Standard Bank of
South Africa and American Express were unable to use
trained inspection moderators, and the former conducted
only code inspections, both obtained outstanding results.
The tremendous reduction in corrective maintenance at the
Standard Bank of South Africa would also bring impres
sive savings in life cycle costs.

Naturally, reduction in maintenance allows redirection
of programmers to work off the application backlog, which
is reputed to contain at least two years of work at most
locations. Impressive cost savings and quality improve
ments have been realized by inspecting test plans and then
the test cases that implement those test plans. For a prod
uct of about 20 000 LOC, R. Larson [5] reported that test
inspections resulted in:

www.manaraa.com

341

• modification of approximately 30 percent of the
'functional matrices representing test coverage,

• detection of 176 major defects in the test plans and
test cases (i.e., in 176 instances testing would have missed
testing critical function or tested it incorrectly), and

• savings of more than 85 percent in programmer time
by detecting the major defects by inspection as opposed
to finding them during functional variation testing.

There are those who would use inspections whether or
not they are cost justified for defect removal because of
the nonquantifiable benefits the technique supplies to
ward improving the service provided to users and toward
creating a more professional application development en
vironment [6].

Experience has shown that inspections have the effect
of slightly front-end loading the committment of people
resources in development, adding to requirements and de
sign, while greatly reducing the effort required during
testing and for rework of design and code. The result is
an overall net reduction in development resource, and
usually in schedule too. Fig. 1 is a pictorial description
of the familiar "snail" shaped curve of software devel
opment resource versus the time schedule including and
without inspections.

THE SOFTWARE QUALITY PROBLEM

The software quality problem is the result of defects in
code and documentation causing failure to satisfy user re
quirements. It also impedes the growth of the information
processing industry. Validity of this statement is attested
to by three of the many pieces of supporting evidence:

• The SHARE User Group Software Service Task
Force Report, 1983 [1], that recommended an order of
magnitude improvement in software quality over the next

www.manaraa.com

p

342

DEVELOPMENT PEOPLE RESOURCE

AND SCHEDULE

, ,
, WITH

j _I.. INSPECTIONS
'I #1''', , III' , , , ,
,I \

/// " \
#I'~'/ " \

" " \ / I \
, I I

DESiGN-ICODINGI' TESTING "tSHIP
SCHEDULE-

Fig. 1.

several years, with a like reduction in service. (Other
manufacturers report similar recommendations from their
users.)

• In 1979, 12 percent of programmer resource was
consumed in- post-shipment corrective maintenance alone
and this figure was growing [8]. (Note that there is also a
significant percentage of development and enhancement
niaintenance resource devoted to correcting defects. This
is probably larger than the 12 percent expended in correc
tive maintenance, but there is no substantiating research.)

• The formal backlog of data processing tasks most
quoted is three years [7].

At this point, a very important definition is in order:

A· defect is an instance in which a requirement is
not satisfied.

Here, it must be recognized that a requirement is any
agreed upon commitment. It is not only the recognizable

www.manaraa.com

343

external product requirement, but can also include inter
nal development requirements (e.g., the exit criteria of an
operation) that must be met in order to satisfy the require
ments of the end product. Examples of this would be the
requirement that a test plan completely verifies that the
product meets the agreed upon needs of the user, or that
the code of a program must be complete before it is sub
mitted to be tested.

While defects become manifest in the end product doc
umentation or code; most of them are actually injected as
the functional aspects of the product and its quality attri
butes are being cre~ted; during development of the re
quirements, the design and coding, or by insertion of
changes. The author's research supports and supplements
that of B. Boehm et ale [9] and indicates that there are
eight attributes that must be considered when describing
quality in a software product:

• intrinsic code quality,
• freedom from problems in operation,
• usability,
• installability,
• documentation for intended users,
• portability,
• maintainability and extendability, and "fitness for

use"-that implicit conventional user needs are satisfied.

INSPECTIONS AND THE SOFTWARE QUALITY PROBLEM

Previously, each of these attributes of software quality
were evaluated by testing and the end user. Now, some
of them are being partly, and -others entirely, verified
against requirements by inspection. In fact, the product
requirements themselves are often inspected to ascertain
whether they meet user needs. In order to eliminate de
fects from the product it is necessary to address their pre
vention, or detection and resolution as soon as possible

www.manaraa.com

344

after their injection during development and maintenance.
Prevention is the most desirable course to follow, and it
~'app~oached in many ways inciuding the use of state
machme representation of de~ign, . systema~c program
tiring,' proof of correctness, process control, development
standards, prototyping, and other methods. Defect detec
tion, on the other hand, was once almost totally dependent
upon testing during development and by'the user. This
has changed, and over the past decade walkthrus and in
spections have assumed a large part of the defect detec
tion burden; inspections finding from 60 to 90 percent
defects. (See [2], '[3], and other unpublished product ex
periences.) They are perfonned much nearer the point of
injection of the defects than is testing, using less resource
for rework and: thus, more than paying for themselves.
IQ. fact, inspection& have been applied to most phases of
development to verify that the key 'software attributes are
pre~ent immediately after the point at which they should
first be introduced into the product. They are also applied
to test plans and test cases to improve the defect detection
efficiency of testing. Thus, inspections 'have been instru
mental in improving all aspects of software product qual
ity, as well as ~e quality of logic design and code. In
fact, inspections supplement defect prevention methods in
improving quality.

Essential to the quality of inspection (or its defect de
tection efficiency) is proper definition of the development
process. And, inspection quality is a direct contributor to
product quality, as will be shown later.

DEFINITION OF THE DEVELOPMENT PROCESS

The software development process is a series of oper
ations so arranged that its execution will deliver the de
sired end product. Typically, these operations are: Re
quirements Definition, System Design, High Level

www.manaraa.com

345

Design, Low Level Design, Coding, Unit Testing, Com
ponent or Function Testing, System Testing, and then user
support and Maintenance. In practice, some of these op
erations are repeated as the product is recycled through
them to insert functional changes and fixes.

The attributes of software quality are invested along
with the functional characteristics of the product during
the early operations, when the cost to remedy defects is
10-100 times less than it would be during testing or main
tenance [2]. Consequently, it is advantageous to find and
correct defects as near to their point of origin as possible.
This is accomplished by inspecting the output product of
each operation to verify that it satisfies the output require
ments or exit criteria of the operation. In most cases, these
exit criteria are not specified with sufficient precision to
allow go/no verification. Specification of exit criteria
in unambiguous terms that are objective and preferably
quantitative is an essential characteristic of any well de
fined process. Exit criteria are the standard against which
inspections measure completion of the product at the end
of an operation, and verify the presence or absence of
quality attributes. (A deviation from exit criteria is a de
fect.)

Shown below are the essence of 4 key criteria taken
from the full set of 15 exit criteria items for the Coding
operation:

• The source code must be at the "first clean compi
lation" level. That means it must be properly compiled
and be free of syntax errors.

• The code must accurately implement the low level
design (which was the verified output of the preceding
process operation).

• All design changes to date are included in the code.
• All rework resulting from the code inspection has

been included and verified.

www.manaraa.com

346

The code inspection, 12, must verify that all 15 of these
exit criteria have been satisfied before a module or other
entity of the product is considered to have completed the
Coding operation. Explicit exit criteria for several of the
other inspection types in use will be contained in the au
thor's book in software inspections. However, there is no
reason why a particular project could not define its own
sets of exit criteria. What is important is that exit criteria
should be as objective as possible, so as to be repeatable;
they should completely describe what is required to exit
each operation; and, they must be observed by all those
involved.

The objective of process control is to measure comple
tion of the product during stages of its development, to
compare the measurement against the project plan, and
then to remedy any deviations from plan. In this context,
the quality of both exit criteria and inspections are of vital
importance. And, they must both be properly described
in the manageable development process, for such a pro
cess must be controllable by definition.

Development is often considered a subset of the main
tenance process. Therefore, the maintenance process must
be treated in the same manner to make it equally manage
able.

SOFTWARE INSPECTION OVERVIEW

This paper will only give an overview description of
the inspection process that is sufficient to enable discus
sion of updates and enhancements. The author's original
paper on the software inspections process [2] gives a brief
description of the inspection process and what goes on in
an inspection, and is the base to which the enhancements
are added. His forthcoming companion books on this sub
ject and on building defect-free software will provide an
implementation level description and will include all the
points addressed in this paper and more.

www.manaraa.com

347

To convey the principles of software inspections, it is
only really necessary to understand how they apply to de
sign and code. A good grasp on this application allows
tailoring of the process to enable inspection of virtually
any operation in development or maintenance, and also
allows inspection for any desired quality attribute. With
this in mind, the main points of inspections will be ex
posed through discussing how they apply in design and
code inspections.

There are three essential requirements for the imple
mentation of inspections:

• definition of the DEVELOPMENT PROCESS in
terms of operations and their EXIT CRITERIA,

• proper DESCRIPTION of the INSPECTION PRO
CESS, and

• CORRECT EXECUTION of the INSPECTION PRO
CESS . (Yes, correct execution of the process is vital.)

THE INSPECTION PROCESS

The inspection process follows any development oper
ation whose product must be verified. As shown below,
it consists of six operations, each with a specific objec
tive:

Operation
PLANNING

OVERVIEW

Objectives

Materials to be inspected must meet
inspection entry criteria.

Arrange the availability of the right
participants.

Arrange suitable meeting place and
time.

Group education of participants in
what is to be inspected.

Assign inspection roles to partici
pants.

www.manaraa.com

PREPARATION

INSPECTION

REWORK
FOLLOW-UP

348

Participants learn the material and
prepare to fulfill their assigned
roles.

Find defects. (Solution hunting and
discussion of design alternatives
is discouraged.)

The author reworks all defects.
Verification by the inspection mod-

erator or the entire inspection
team to assure that all fixes are
effective and that no secondary
defects have been introduced.

Evaluation of hundreds of inspections involving thou
sands of programmers in which alternatives to the above
steps have been tried has shown that all these operations
are really necessary. Omitting or combining operations
has led to degraded inspection efficiency that outweighs
the apparent short-term benefits. OVERVIEW is the only
operation that under certain conditions can be omitted with
slight risk. Even FOLLOW-UP is justified as study has
shown that approximately one of every six fixes are them
selves incorrect, or create other defects.

From observing scores of inspections, it is evident that
participation in inspection teams is extremely taxing and
should be limited to periods of 2 hours. Continuing be
yond 2 hours, the defect detection ability of the team
seems to diminish, but is restored after a break of 2 hours
or so during which other work may be done. Accordingly,
no more than two 2 hour sessions of inspection per day
are recommended.

To assist the inspectors in finding defects, for not all
inspectors start off being good detectives, a checklist of
defect types is created to help them identify defects ap
propriate to the exit criteria of each operation whose prod
uct is to be inspected. It also serves as a guide to classi-

www.manaraa.com

349

fication of defects found by inspection prior to their entry
to the inspection and test defect data base of the project.
(A database containing these and other data is necessary
for quality control of development.)

PEOPLE AND INSPECTIONS

Inspection participants are usually programmers who
are drawn from the project involved. The roles they play
for design and code inspections are those of the Author
(Designer or Coder), Reader (who paraphrases the design
or code as if they will implement it), Tester (who views
the product from the testing standpoint), and Moderator.
These roles are described more fully in [2], but that level
of detail is not required here. Some inspections types, for
instance those of system structure, may require more par
ticipants, but it is advantageous to keep the number of
people to a minimum. Involving the end users in those
inspections in which they can truly participate is also very
helpful.

The Inspection Moderator is a key player and requires
special training to be able to conduct inspections that are
optimally effective. Ideally, to preserve objectivity, the
moderator should not be involved in development of the
product that is to be inspected, but should come from an
other similar project. The moderator functions as a
"player-coach" and is responsible for conducting the in
spection so as to bring a peak of synergy from the group.
This is a quickly learned ability by those with some in
terpersonal skill. In fact, when participants in the mod
erator training classes are questioned about their case
studies, they invariably say that they sensed the presence
of the "Phantom Inspector," who materialized as a feel
ing that there had been an additional presence contributed
by the way the inspection team worked together. The
moderator's task is to invite the Phantom Inspector.

www.manaraa.com

350

When they are properly approached by management,
programmers respond well to inspections. In fact, after
they become familiar with them, many programmers have
been known to complain when they were not allowed
enough time or appropriate help to conduct inspections
correctly.

Three separate classes of education have been recog
nized as a necessity for proper long lasting implementa
tion of inspections. First, Management requires a class of
one day to familiarize them with inspections and their
benefits to management, and their role in making them
successful. Next, the Moderators need three days of ed
ucation. And, finally, the other Participants should re
ceive one half day of training on inspections, the benefits,
and their roles. Some organizations have started inspec
tions without proper education and have achieved some
success, but less than others who prepared their partici
pants fully. This has caused some amount of start-over,
which was frustrating to everyone involved.

MANAGEMENT AND INSPECTIONS

A definite philosophy and set of attitudes regarding in
spections and their results is essential. The management
education class on inspections is one of the best ways
found to gain the knowledge that must be built into day
to-day management behavior that is required to get the
most from inspections on a continuing basis. For exam
ple, management must show encouragement for proper
inspections. Requiring inspections and then asking for
shortcuts will not do. And, people must be motivated to
find defects by inspection. Inspection results must never
be used for personnel performance appraisal. However,
the results of testing should be used for performance ap
praisal. This promotes finding and reworking defects at
the lowest cost, and allows testing for verification instead

www.manaraa.com

351

of debugging. In most situations programmers come to
depend upon inspections; they prefer defect-free product.
And, at those installations where management has taken
and maintained a leadership role with inspections, they
have been well accepted and very successful.

INSPECTION RESULTS AND THEIR USES

The defects found by inspection are immediately re
corded and classified by the moderator before being en
tered into the project data base. Here is an example:

In module: XXX, Line: YYY, NAME-CHECK is per

formed one less time than required-LOIW IMAJ

The description of the defect is obvious. The classifi
cation on the right means that this is a defect in Logic,
that the logic is Wrong (as opposed to Missing or Extra),
and that it is a Major defect. A MAJOR defect is one that
would cause a malfunction or unexpected result if left un
corrected. Inspections also find MINOR defects. They
will not cause malfunction, but are more of the nature of
poor workmanship, like misspellings that do not lead to
erroneous product perfonnance.

Major defects are of the same type as defects found by
testing. (One unpublished study of defects found by sys
tem testing showed that more than 87 percent could have
been d,etected by inspection.) Because Major defects are
equivalent to test defects, inspection results can be used
to identify defect prone design and code. This is enabled
because empirical data indicates a directly proportional
relationship between the inspection detected defect rate in
a piece of code and the defect rate found in it by subse
quent testing. Using inspection results in this way, it is
possible to identify defect prone code and correct it, in
effect, performing real-time quality control of the product
as it is being developed, before it is shipped or put into
use.

www.manaraa.com

352

There are, of course, many Process and Quality Control
uses for inspection data including:

• Feedback to improve the development process by
identification and correction of the root causes of system
atic defects before more code is developed;

• Feed-forward to prepare the process ahead to handle
problems or to evaluate corrective action in advance
(e. g., handling defect prone code);

• Continuing improvement and control of inspections.
An outstanding benefit of feedback, as reported in [3]

was that designers and coders through involvement in in
spections of their own work learned to find defects they
had created more easily. This enabled them to avoid caus
ing these defects in future work, thus providing much
higher quality product.

VARIOUS ApPLICATIONS OF INSPECTIONS

The inspection process was originally applied to hard
ware logic, and then to software logic design and code. It
was in the latter case that it first gained notice. Since then
it has been very successfully applied to software test plans
and test cases, user documentation, high level design,
system structure design, design changes, requirements
development, and microcode. It has also been employed
for special purposes such as cleaning up defect prone
code, and improving the quality of code that has already
been tested. And, finally, it has been resurrected to pro
duce defect-free hardware. It appears that virtually any
thing that is created by a development process and that
can be made visible and readable can be inspected. All
that is necessary for an inspection is to define the exit
criteria of the process operation that will make the product
to be inspected, tailor the inspection defect checklists to
the particular product and exit criteria, and then to exe
cute the inspection process.

www.manaraa.com

353

What's in a Name?
In contrast to inspections, walkthrus, which can range

anywhere from cursory peer reviews to inspections, do
not usually practice a process that is repeatable or collect
data (as with inspections), and hence this process cannot
be reasonably studied and improved. Consequently, their
defect detection efficiencies are usually quite variable and,
when studied, were found to be much lower than those of
inspections [2], [3]. However, the name "walkthru" (or
"walkthrough") has a place, for in some management and
national cultures it is more desirable than the term "in
spection" and, in fact, the walkthrus in some of these
situations are identical to formal inspections. (In almost
all instances, however, the author's experience has been
that the tenn walkthru has been accurately applied to the
less effi.cient method-which process is actually in use can
be readily detennined by examining whether a formally
defined development process with exit criteria is in effect,
and by applying the criteria in [2, Table 5] to the activity.
In addition, initiating walkthrus as a migration path to in
spections has led to a lot of frustration in many organi
zations because once they start with the informal, they
seem to have much more difficulty moving to the formal
process than do those that introduce inspections from the
start. And, programmers involved in inspections are usu
ally more pleased with the results. In fact, their major
complaints are generally to do with things that detract
from inspection quality.) What is important is that the
same results should not be expected of walkthrus as is
required of inspections, unless a close scrutiny proves the
process a~ conduct of the "walkthru" is identical to that
required for inspections. Therefore, although walkthrus
do serve very useful though limited functions, they are
not discussed further in this paper.

www.manaraa.com

354

Recognizing many of the abovementioned points, the
IBM Infonnation Systems Management Institute course
on this subject is named: "Inspections: Fonnal Applica
tion Walkthroughs." They teach about inspection.

CONTRIBUTORS TO SOFTWARE INSPECTION QUALITY
Quality of inspection is defined as its ability to detect

all instances in which the product does not meet its re
quirements. Studies, evaluations, and the observations of
many people who have been involved in inspections over
the past decade provide insights into the contributors to
inspection quality. Listing contributors is of little value
in trying to manage them as many have relationships with
each other. These relationships must be understood in or
der to isolate and deal with initiating root causes of prob
lems rather than to waste effort dealing with symptoms.
The ISHIKAWA or FISHBONE CAUSE/EFFECT DIA
GRAM [11], shown in Fig. 2, shows the contributors and
their cause/effect relationships.

As depicted in Fig. 2, the main contributors, shown as
main branches on the diagram, are: PRODUCT IN
SPECTABILITY, INSPECTION PROCESS, MANAGERS,
and PROGRAMMERS. Subcontributors, like INSPEC
TION MATERIALS and CONFORMS WITH STAN
DARDS, which contribute to the PRODUCT INSPECTA
BILITY, are shown as twigs on these branches.
Contributors to the subcontributors are handled similarly.
Several of the relationships have been proven by objective
statistical analysis, others are supported by empirical data,
and some are evident from project experience. For ex
ample, one set of relationships very thoroughly estab
lished in a controlled study by F. O. Buck, in "Indicators
of Quality Inspections" [10], are:

• excessive SIZE OF MATERIALS to be inspected
leads to a PREPARATION RATE that is too high.

www.manaraa.com

355

• PREPARATION RATE that is too high contributes
to an excessive RATE OF INSPECTION, and

• Excessive RATE OF INSPECTION causes fewer de
fects to be found.

This study indicated that the following rates should be
used in planning the 12 code inspection:

OVERVIEW:

PREPARATION:

INSPECTION:

Maximum Inspection
Rate:

500 Noncommentary Source
Statements per Hour.

125 Noncommentary Source
Statements per Hour.

90 Noncommentary Source
Statements per Hour.

125 Noncommentary Source
Statements per Hour.

The rate of inspection seems tied to the thoroughness
of the inspection, and there is evidence that defect detec
tion efficiency diminishes at rates above 125 NCSS/h.
(Many projects require reinspection if this maximum rate
is exceeded, and the reinspection usually finds more de
fects.) Separate from this study, project data show that
inspections conducted by trained moderators are very
much more likely to approximate the permissible inspec
tion rates, and yield higher quality product than modera
tors who have not been trained. Meeting this rate is not a
direct conscious purpose of the moderator, but rather is
the result of proper conduct of the inspection. In any
event, as the study shows, requiring too much material to
be inspected will induce insufficient PRE PARA TION
which, in tum, will cause the INSPECTION to be con
ducted too fast. Therefore, it is the responsibility of man-

www.manaraa.com

356

agement and the moderator to start off with a plan that
will lead to successful inspection.

The planning rate for high level design inspection of
systems design is approximately twice the rate for code
inspection, and low level (Logic) design inspection is
nearly the same (rates are based upon the designer's es
timate of the number of source lines of code that will be
needed to implement the design). Both these rates may
depend upon the complexity of the material to be in
spected and the manner in which it is prepared (e.g., un
structured code is more difficult to read and requires the
inspection rate to be lowered. Faster inspection rates while
retaining high defect detection efficiency may be feasible
with highly structured, easy to understand material, but
further study is needed). Inspections of requirements, test
plans, and user documentation are governed by the same
rules as for code inspection, although inspection rates are
not as clear for them and are probably more product and
project dependent than is the case of code.

With a good knowledge of and attention to the contrib
utors to inspection quality, management can profoundly
influence the quality, and the development and mainte
nance costs of the products for which they are responsi
ble.

SUMMARY

Experience over the past decade has shown software
inspections to be a potent defect detection method, find
ing 60-90 percent of all defects, as well as providing
feedback that enables programmers to avoid injecting de
fects in future work. As well as providing checkpoints to
facilitate process management, inspections enable mea
surement of the performance of many tools and tech
niques in individual process operations. Because inspec
tion engages similar skills to those used in creating the

www.manaraa.com

PR
O

D
U

C
T

IN

SP
E

C
T

A
B

IL
IT

V

M
A

N
A

G
ER

S

IN
SP

E
C

T
IO

N

PR
O

C
eS

S

"
A

O
C

IS
S

 U
C

E
C

U
T

fO
N

 •

M
O

D
E

R
A

T
O

R

P
R

O
G

R
A

M
M

E
 A

C
O

M
P

E
T

E
N

C
Y

A
P

P
R

O
V

E
D

I
C

E
R

T
IF

IE
D

 E
O

U
C

A
T

IO
N

PR
O

G
R

A
M

M
E

R
S

F
ig

.
2.

F

is
hb

on
e

di
ag

ra
m

 o
f

co
nt

ri
bu

to
rs

 t
o

in
sp

ec
ti

on
 q

ua
li

ty
.

•
T

O
 C

O
V

E
R

 L
O

C
A

L

P
R

O
JE

C
T

 N
E

E
D

S
.

E
.

G
.

E
K

IT
/E

N
T

R
Y

C

R
IT

E
R

IA
,

M
A

T
E

R
IA

L
S

,
E

T
C

.

IN
SP

E
C

T
IO

N

Q
U

A
L

IT
V

V
J

(J
1

-.

.j

www.manaraa.com

358

product (and it has been applied to virtually every design
technique and coding language), it appears that anything
that can be created and described can also be inspected.

Study and observation have revealed the following key
aspects that must be managed to take full advantage of the
many benefits that inspections offer:

Capability Action Needed to Enhance the
Capability

• Defect Detection - Management understanding
and continuing support.
This starts with education.

- Inspection moderator training
(3 days).

• Defect Prevention

- Programmer training.
- Continuing management of

the contributors to inspec
tion quality.

- Inspect all changes.
- Periodic review of effective-

ness by management.
- Inspect test plans and test

cases.
- Apply inspections to main de

fect generating operations
in development and main
tenance processes.

(or avoidance) - Encourage programmers to
understand how they cre
ated defects and what must
be done to avoid them in
future.

- Feedback inspection results
promptly and removes root
causes of systematic de-

www.manaraa.com

• Process
Management

359

fects from the development
or maintenance processes.

- Provide inspection results to
quality circles or quality
improvement teams.

- Creation of requirements for
expert system tools (for de
fect prevention) based upon
analysis of inspection data.

- Use inspection completions as
checkpoints in the devel
opment plan and measure
accomplishment against
them.

REFERENCES

[1] L. H. Fenton, "Response to the SHARE software service task force
report," IBM Corp., Kingston, NY, Mar. 6,1984.

[2] M. E. Fagan, "Design and code inspections to reduce errors in pro
gram development," IBM Sy.YI. J., vol. 15, no. 3, 1979.

[3] IBM Technical Newsletter GN20-3814, Base Publication GC20-2000-
0, Aug. 15, 1978.

[4] T. D. Crossman, "Inspection teams, are they worth it?" in Proc. 2nd
Nat. Symp. EDP Quality Assurance, Chicago, IL, Mar. 24-26, 1982.

[5] R. R. Larson, "Test plan and test case inspection specification," IBM
Corp., Tech. Rep. TR21.585, Apr. 4, 1975.

[6] T. D. Crossman, "Some experiences in the use of inspection teams
in application development," in Proc. Applicat. Develop. Symp.,
Monterey, CA, 1979.

[7] G. D. Brown and D. H. Sefton, "The micro vs. the applications
logjam," Datamation, Jan, 1984.

[8] J. H. Morrissey and L. S.-Y. Wu, "Software engineering: An eco
nomical perspective," in Proc. IEEE Con! Software Eng., Munich,
West Germany, Sept. 14-19, 1979.

191 8. Boehm et al., Characteristics of Software Quality. New York:
American Elsevier, 1978.

LIO] F. O. Buck, "Indicators of quality inspections," IBM Corp., Tech.
Rep. IBM TR21.802, Sept. 1981.

[11] K. Ishikawa, Guide to Quality Control. Tokyo, Japan: Asian Pro
ductivity Organization, 1982.

www.manaraa.com

360

Michael E. Fagan (M'62) is a Senior Technical
Staff Member at the IBM Corporation, Thomas J.
Watson Research Center • Yorktown Heights, NY .
While at IBM, he has had many interesting man
agement und techniculussignments in the fields of
engineering. nUlIlufucturing. soflwllre develop
ment, and research. In 1972. he created the soft
ware inspection process, and has helped imple
ment it within IBM and also promoted its use in
the software industry. For this and other work, he
has received IBM Outstanding Contribution and

Corporate Achievement Awards. His area of interest is in studying and
improving all the processes that comprise the software life cycle. For the
past two years, he has been a Visiting Professor at, and is on the graduate
council of, the University of Maryland.

www.manaraa.com

Erich Gamma

Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides

Design Patterns: Abstraction and Reuse
of Object-Oriented Design

Proceedings ECOOP'93, Kaiserslautern, July 1993,
Oscar Nierstrasz (Ed.),

Lecture Notes in Computer Science 707,
Springer-Verlag, Heidelberg

pp.406-431

www.manaraa.com

Design Patterns: Abstraction and Reuse of
Object-Oriented Design

Erich Gamma1*, Richard Helm2, Ralph Johnson3, John Vlissides2

1 Taligent, Inc.
10725 N. De Ansa Blvd., Cupertino, CA 95014-2000 USA

2 I.B.M. Thomas J. Watson Research Center
P.O. Box 704, Yoddown Heights, NY 10598 USA

I Department of Computer Science
University of Dlinoia at Urban .. Champaign

1034 W. Springfield Ave., Urbana, IL 61801 USA

Abstract. We propose design patterns as a new mechanism for
expressing object-oriented design experience. Design paUerns identify,
name, and abstract common themes in object-oriented design. They cap
ture the intent behind a design by identifying objects, their collabora
tions, and the distribution of responsibilities. Design patterns play many
roles in the object-oriented development process: they provide a com
mon vocabulary for design, they reduce system complexity by naming
and defining abstractions, they constitute a base of experience for build
ing reusable software, and they act as building blocks from which more
complex designs can be built. Design paUerns can be considered reusable
micro-architectures that contribute to an overall system architecture. We
describe how to express and organize design paUerns and introduce a
catalog of design patterns. We also describe our experience in applying
design paUerns to the design of object-oriented systems.

1 Introduction

Design methods are supposed to promote good design, to teach new designers
how to design well, and to standardize the way designs are developed. Typically,
a design method comprises a set of syntactic notations (usually graphical) and a
set of rules that govern how and when to use each notation. It will also describe
problems that occur in a design, how to fix them, and how to evaluate a design.
Studies of expert programmers for conventional languages, however, have shown
that knowledge is not organized simply around syntax, but in larger conceptual
structures such as algorithms, data structures and idioms [1, 7, 9,27], and plans
that indicate steps necessary to fulfill a particular goal [26]. It is likely that de
signers do not think about the notation they are using for recording the design.
Rather, they look for patterns to match against plans, algorithms, data struc
tures, and idioms they have learned in the past. Good designers, it appears, rely

* Work performed while at UBILAB, Union Bank of Switsedand, Zurich, Swiberland.

www.manaraa.com

364

on large amounts of design experience, and this experience is just as important
as the notations for recording designs and the rules for using those notations.

Our experience with the design of object-oriented systems and frame
works {15, 17, 22, 30, 31] bears out this observation. We have found that there
exist idiomatic class and object structures that help make designs more flexible,
reusable, and elegant. For example, the Model-View-Controller (MVC) paradigm
from Smalltalk [19] is a design structure that separates representation from pre
sentation. MVC promotes flexibility in the choice of views, independent of the
model. Abstract factories [10] hide concrete subclasses from the applications that
use them so that class names are not hard-wired into an application.

Well-defined design structures like these have a positive impact on soft
ware development. A software architect who is familiar with a good set of de
sign structures can apply them immediately to design problems without hav
ing to rediscover them. Design structures also facilitate the reuse of successful
architectures-expressing proven techniques as design structures makes them
more readily accessible to developers of new systems. Design structures can even
improve the documentation and maintenance of existing systems by furnishing
an explicit specification of class and object interactions and their underlying
intent.

To this end we propose design patterns, a new mechanism for expressing
design structures. Design patterns identify, name, and abstract common themes
in object-oriented design. They preserve design information by capturing the in
tent behind a design. They identify classes, instances, their roles, collaborations,
and the distribution of responsibilities. Design patterns have many uses in the
object-oriented development process:

- Design patterns provide a common vocabulary for designers to communicate,
document, and explore design alternatives. They reduce system complexity
by naming and defining abstractions that are above classes and instances. A
good set of design patterns effectively raises the level at which one programs.

- Design patterns constitute a reusable base of experience for building reusable
software. They distill and provide a means to reuse the design knowledge
gained by experienced practitioners. Design patterns act as building blocks
for constructing more complex designs; they can be considered micro
architectures that contribute to overall system architecture.

- Design patterns help reduce the learning time for a class library. Once a
library consumer has learned the design patterns in one library, he can reuse
this experience when learning a new class library. Design patterns help a
novice perform more like an expert.

- Design patterns provide a target for the reorganization or refactoring of class
hierarchies [23]. Moreover, by using design patterns early in the lifecycle, one
can avert refactoring at later stages of design.

The major contributions of this paper are: a definition of design patterns, a
means to describe them, a system for their classification, and most importantly,
a catalog containing patterns we have discovered while building our own class

www.manaraa.com

365

libraries and patterns we have collected from the literature. This work has its
roots in Gamma's thesis [11], which abstracted design patterns from the ET++
framework. Since then the work has been refined and extended based on our
collective experience. Our thinking has also been infiuenced and inspired by
discussions within the Architecture Handbook Workshops at recent OOPSLA
conferences [3, 4].

This paper has two parts. The first introduces design patterns and explains
techniques to describe them. Next we present a classification system that char
acterises common aspects of patterns. This classification will serve to structure
the catalog of patterns presented in the second part of this paper. We discuss
how design patterns impact object-oriented programming and design. We also
review related work.

The second part ofthis paper (the Appendix) describes our current catalog
of design patterns. As we cannot include the complete catalog in this paper
(it currently runs over 90 pages [12]), we give instead a brief summary and
include a few abridged patterns. Each pattern in this catalog is representative
of what we judge to be good object-oriented design. We have tried to reduce the
subjectivity of this judgment by including only design patterns that have seen
practical application. Every design pattern we have included works-most have
been used at least twice and have either been discovered independently or have
been used in a variety of application domains.

2 Design Patterns

A design pattern consists of three essential parts:

1. An abstract description of a class or object collaboration and its structure.
The description is abstract because it concerns abstract design, not a par
ticular design.

2. The issue in system design addressed by the abstract structure. This deter
mines the circumstances in which the design pattern is applicable.

3. The consequences of applying the abstract structure to a system's archi
tecture. These determine if the pattern should be applied in view of other
design constraints.

Design patterns are defined in terms of object-oriented concepts. They are suf
ficiently abstract to avoid specifying implementation details, thereby ensuring
wide applicability, but a pattern may provide hints about potential implemen
tation issues.

We can think of a design pattern as a micro-architecture. It is an architecture
in that it serves as a blueprint that may have several realisations. It is "micro" in
that it defines something less than a complete application or library. To be useful,
a design pattern should be applicable to more than a few problem domains; thus
design patterns tend to be relatively small in size and scope. A design pattern can
also be considered a transformation of system structure. It defines the context

www.manaraa.com

366

for the transformation, the change to be made, and the consequences of this
transformation.

To help readers understand patterns, each entry in the catalog also includes
detailed descriptions and examples. We use a template (Figure 1) to structure
our descriptions and to ensure uniformity between entries in the catalog. This
template also explains the motivation behind its structure. The Appendix con
tains three design patterns that use the template. We urge readers to study the
patterns in the Appendix as they are referenced in the following text.

3 Categorizing Design Patterns

Design patterns vary in their granularity and level of abstraction. They are
numerous and have common properties. Because there are many design patterns,
we need a way to organize them. This section introduces a classification system
for design patterns. This classification makes it easy to refer to families of related
patterns, to learn the patterns in the catalog, and to find new patterns.

Characterization

Creational Structural Behavioral

Jurisdiction Class Factory Method Adapter (class) Template Method

Bridge (class)

Object Abstract Factory Adapter (object) Chain of Responsibility

Prototype Bridge (object) Command
Solitaire Flyweight Iterator (object)

Glue Mediator

Proxy Memento
Observer

State

Strategy

Compound Builder Composite Interpreter
Wrapper Iterator (compound)

Walker

Table 1. Design Pattern Space

We can think of the set of all design patterns in terms of two orthogonal
criteria, jurisdiction and characterization. Table 1 organizes our current set
of patterns according to these criteria.

Jurisdiction is the domain over which a pattern applies. Patterns having class
jurisdiction deal with relationships between base classes and their subclasses;

www.manaraa.com

367

DESIGN PATTERN NAME Jurisdiction Characterization

What is the pattern's name and classification? The name should convey the pattern's
essence succinctly. A good name is vital, as it will become part of the design vocabulary.

Intent
What does the design pattern do? What is its rationale and intent? What partic
ular design issue or problem does it address?

Motivation
A scenario in which the pattern is applicable, the particular design problem or
issue the pattern addresses, and the class and object structures that address this
issue. This information will help the reader understand the more abstract descrip
tion of the pattern that follows.

Applicability
What are the situations in which the design pattern can be applied? What are
examples of poor designs that the pattern can address? How can one recognise
these situations?

Participants
Describe the classes and/or objects participating in the design pattern and their
responsibilities using CRC conventions [5].

Collaborations
Describe how the participants collaborate to carry out their responsibilities.

Diagram
A graphical representation of the pattern using a notation based on the Object
Modeling Technique (OMT) (25], to which we have added method pseudo-code.

Consequences
How does the pattern support its objectives? What are the trade-offs and re
sults of using the pattern? What does the design pattern objectify? What aspect
of system structure does it allow to be varied independently?

Implementation
What pitfalls, hints, or techniques should one be aware of when implementing
the pattern? Are there language-specific issues?

Examples
This section presents examples from real systems. We try to include at least two
examples from different domains.

See Also
What design patterns have closely related intent? What are the important dif
ferences? With which other patterns should this one be used?

Fig. 1. Buic Design Pattern Template

www.manaraa.com

368

class jurisdiction covers static semantics. The object jurisdiction concerns re
lationships between peer objects. Patterns having compound jurisdiction deal
with recursive object structures. Some patterns capture concepts that span juris
dictions. For example, iteration applies both to collections of objects (i.e., object
jurisdiction) and to recursive object structures (compound jurisdiction). Thus
there are both object and compound versions of the Iterator pattern.

Characterization reflects what a pattern does. Patterns can be characterized
as either creational, structural, or behavioral. Creational patterns concern
the process of object creation. Structural patterns deal with the composition of
classes or objects. Behavioral patterns characterize the ways in which classes or
objects interact and distribute responsibility.

The following sections describe pattern jurisdictions in greater detail for each
characterization using examples from our catalog.

3.1 Class Jurisdiction

Class Creational. Creational patterns abstract how objects are instantiated
by hiding the specifics of the creation process. They are useful because it is
often undesirable to specify a class name explicitly when instantiating an object.
Doing so limits flexibility; it forces the programmer to commit to a particular
class instead of a particular protocol. If one avoids hard-coding the class, then
it becomes possible to defer class selection to run-time.

Creational class patterns in particular defer some part of object creation to
subclasses. An example is the Factory Method, an abstract method that is called
by a base class but defined in subclasses. The subclass methods create instances
whose type depends on the subclass in which each method is implemented. In
this way the base class does not hard-code the class name of the created object.
Factory Methods are commonly used to instantiate members in base classes with
objects created by subclasses.

For example, an abstract Application class needs to create application
specific documents that conform to the Document type. Application instanti
ates these Document objects by calling the factory method DoMakeDocument.
This method is overridden in classes derived from Application. The subclass
Draw Application, say, overrides DoMakeDocument to return a Draw Document
object.

Class Structural. Structural class patterns use inheritance to compose proto
cols or code. As a simple example, consider using multiple inheritance to mix two
or more classes into one. The result is an amalgam class that unites the semantics
of the base classes. This trivial pattern is quite useful in making independently
developed class libraries work together [15].

Another example is the class-jurisdictional form of the Adapter pattern. In
general, an Adapter makes one interface (the adaptee's) conform to another,
thereby providing a uniform abstraction of different interfaces. A class Adapter
accomplishes this by inheriting privately from an adaptee class. The Adapter
then expresses its interface in terms of the adaptee's.

www.manaraa.com

369

Class Behavioral. Behavioral class patterns capture how classes cooperate
with their subclasses to fulfill their semantiCi. Template Method is a simple and
well-known behavioral class pattern [32]. Template methods define algorithms
step by step. Each step can invoke an abstract method (which the subclass must
define) or a base method. The purpose of a template method is to provide an ab
stract definition of an algorithm. The subclass must implement specific behavior
to provide the services required by the algorithm.

3.2 Object Jurisdiction

Object patterns all apply various forms of non-recursive object composition. Ob
ject composition represents the most powerful form of reusability-a collection
of objects are most easily reused through variations on how they are composed
rather than how they are subclassed.

Object Creational. Creational object patterns abstract how sets of objects
are created. The Abstract Factory pattern (page 18) is a creational object pat
tern. It describes how to create "product" objects through an generic interface.
Subclasses may manufacture specialized versions or compositions of objects as
permitted by this interface. In turn, clients can use abstract factories to avoid
making assumptions about what classes to instantiate. Factories can be com
posed to create larger factories whose structure can be modified at run-time to
change the semantics of object creation. The factory may manufacture a cus
tom composition of instances, a shared or one-of-a-kind instance, or anything
else that can be computed at run-time, so long as it conforms to the abstract
creation protocol.

For example, consider a user interface toolkit that provides two types of scroll
bars, one for Motif and another for Open Look. An application programmer may
not want to hard-code one or the other into the application-the choice of scroll
bar will be determined by, say, an environment variable. The code that creates
the scroll bar can be encapSUlated in the class Kit, an abstract factory that
abstracts the specific type of scroll bar to instantiate. Kit defines a protocol for
creating scroll bars and other user interface elements. Subclasses of Kit redefine
operations in the protocol to return specialised types of scroll bars. A MotifKit's
scroll bar operation would instantiate and return a Motif scroll bar, while the
corresponding OpenLookKit operation would return an Open Look scroll bar.

Object Structural. Structural object patterns describe ways to assemble ob
jects to realise new functionality. The added flexibility inherent in object com
position stems from the ability to change the composition at run-time, which is
impossible with static class composition'.

Proxy is an example of a structural object pattern. A proxy acts as a con
venient surrogate or placeholder for another object. A proxy GaD be used as a

, However, object models that IUppOrl dynamic inheritance, mOlt notably Self [29],
are as flexible as object composition in theory.

www.manaraa.com

370

local representative for an object in a different address space (remote proxy), to
represent a large object that should be loaded on demand (virtual proxy), or to
protect access to the original object (protected proxy). Proxies provide a level of
indirection to particular properties of objects. Thus they can restrict, enhance,
or alter an object's properties.

The Flyweight pattcm1 is concerned with object sharing. Objects are shared
for at least two reasons: efficiency and consistency. Applications that use large
quantities of objects must pay careful attention to the cost of each object. Sub
stantial savings can accrue by sharing objects instead of replicating them. How
ever, objects can only be shared if they do not define context-dependent state.
Flyweights have no context-dependent state. Any additional information they
need to perform their task is passed to them when needed. With no context
dependent state, Hyweights may be shared freely. Moreover, it may be necessary
to ensure that all copies of an object stay consistent when one of the copies
changes. Sharing provides an automatic way to maintain this consistency.

Object Behavioral. Behavioral object patterns. describe how a group of peer
objects cooperate to perform a task that no single object can carry out by
itself. For example, patterns such as Mediator and Chain of Responsibility ab
stract control How. They call for objects that exist solely to redirect the How of
messages. The redirection may simply notify another object, or it may involve
complex computation and buffering. The Observer pattern abstracts the syn
chronisation of state or behavior. Entities that are co-dependent to the extent
that their state must remain synchronised may exploit Observer. The classic
example is the model-view pattern, in which multiple views of the model are
notified whenever the model's state changes.

The Strategy pattern (page 21) objectifies an algorithm. For example, a text
composition object may need to support different line breaking algorithms. It
is infeasible to hard-wire all such algorithms into the text composition class
and subclasses. An alternative is to objectify different algorithms and provide
them as Compositor subclasses. The interface for Compositors is defined by
the abstract Compositor class, and its derived classes provide different layout
strategies, such as simple line breaks or full page justification. Instances of the
Compositor subclasses can be coupled with the text composition at run-time to
provide the appropriate text layout. Whenever a text composition has to find
line breaks, it forwards this responsibility to its current Compositor object.

3.3 Compound Jurisdiction

In contrast to patterns having object jurisdiction, which concern peer objects,
patterns with compound jurisdiction affect recursive object structures.

Compound Creationa!. Creational compound patterns are concerned with
the creation of recursive object structures. An example is the Builder pattern.
A Builder base class defines a generic interface for incrementally constructing

www.manaraa.com

371

recursive object structures. The Builder hides details of how objects in the struc
ture are created, represented, and composed so that changing or adding a new
representation only requires defining a new Builder class. Clients will be unaf
fected by changes to Builder.

Consider a parser for the RTF (Rich Text Format) document exchange format
that should be able to perform multiple format conversions. The parser might
convert RTF documents into (1) plain ASCII text and (2) a text object that
can be edited in a text viewer object. The problem is how to make the parser
independent of these different conversions.

The solution is to create an RTF Reader class that takes a Builder object as
an argument. The RTFReader knows how to parse the RTF format and notifies
the Builder whenever it recognises text or an RTF control word. The builder
is responsible for creating the corresponding data structure. It separates the
parsing algorithm from the creation of the structure that results from the pars
ing process. The parsing algorithm can then be reused to create any number of
different data representations. For example, an ASCII builder ignores all notifi
cations except plain text, while a Text builder uses the notifications to create a
more complex text structure.

Compound Structural. Structural compound patterns capture techniques for
structuring recursive object structures. A simple example is the Composite pat
tern. A Composite is a recursive composition of one or more other Composites.
A Composite treats multiple, recursively composed objects as a single object.

The Wrapper pattern (page 24) describes how to flexibly attach additional
properties and services to an object. Wrappers can be nested recursively and
can therefore be used to compose more complex object structures. For example,
a Wrapper containing a single user interface component can add decorations
such as borders, shadows, scroll bars, or services like scrolling and zooming. To
do this, the Wrapper must conform to the interface of its wrapped component
and forward messages to it. The Wrapper can perform additional actions (such
as drawing a border around the component) either before or after forwarding a
message.

Compound Behavioral. Finally, behavioral compound patterns deal with be
havior in recursive object structures. Iteration over a recursive structure is a
common activity captured by the Iterator pattern. Rather than encoding and
distributing the traversal strategy in each class in the structure, it can be ex
tracted and implemented in an Iterator class. Iterators objectify traversal al
gorithms over recursive structures. Different iterators can implement pre-order,
in-order, or post-order traversals. All that is required is that nodes in the struc
ture provide services to enumerate their sub-structures. This avoids hard-wiring
traversal algorithms throughout the classes of objects in a composite structure.
Iterators may be replaced at run-time to provide alternative traversals.

www.manaraa.com

372

4 Experience with Design Patterns

We have applied design patterns to the design and construction of a several
systems. We briefly describe two of these systems and our experience.

4.1 ET++SwapsManager

The ET ++SwapsManager [10] is a highly interactive tool that lets traders value,
price, and perform what-if analyses for a financial instrument called a swap. Dur
ing this project the developers had to first learn the ET++ class library, then
implement the tool, and finally design a framework for creating "calculation
engines" for different financial instruments. While teaching ET++ we empha
sized not only learning the class library but also describing the applied design
patterns. We noticed that design patterns reduced the effort required to learn
ET++. Patterns also proved helpful during development in design and code
reviews. Patterns provided a common vocabulary to discuss a design. When
ever we encountered problems in the design, patterns helped us explore design
alternatives and find solutions.

4.2 QOCA: A Constraint Solving Toolkit

QOCA (Quadratic Optimization Constraint Architecture) [14, 15] is a new
object-oriented constraint-solving toolkit developed at IBM Research. QOCA
leverages recent results in symbolic computation and geometry to support effi
cient incremental and interactive constraint manipulation. QOCA's architecture
is designed to be flexible. It permits experimentation with different classes of
constraints and domains (e.g., reals, booleans, etc.), different constraint-solving
algorithms for these domains, and different representations (doubles, infinite pre
cision) for objects in these domains. QOCA's object-oriented design allows parts
of the system to be varied independently of others. This flexibility was achieved,
for example, by using Strategy patterns to factor out constraint solving algo
rithms and Bridges to factor out domains and representations of variables. In
addition, the Observable pattern is used to propagate notifications when vari
ables change their values.

4.3 Summary of Observations

The following points summarize the major observations we have made while
applying design patterns:

- Design patterns motivate developers to go beyond concrete objects; that is,
they objectify concepts that are not immediately apparent as objects in the
problem domain.

- Choosing intuitive class names is important but also difficult. We have found
that design patterns can help name classes. In the ET ++SwapsManager's
calculation engine framework we encoded the name of the design pattern

www.manaraa.com

373

in the class name (for example CalculationStrategy or TableAdaptor). This
convention results in longer class names, but it gives clients of these classes
a hint about their purpose.

- We often apply design patterns a.fter the first implementation of an archi
tecture to improve its design. For example, it is easier to apply the Strategy
pattern after the initial implementation to create objects for more abstract
notions like a calculation engine or constraint solver. Patterns were also used
as targets for class refactorings. We often find ourselves saying, "Make this
part of a class into a Strategy," or, "Let's split the implementation portion
of this class into a Bridge."

- Presenting design patterns together with examples of their application
turned out to be an effective way to teach object-oriented design by example.

- An important issue with any reuse technology is how a reusable component
can be adapted to create a problem-specific component. Design patterns are
particularly suited to reuse because they are abstract. Though a concrete
class structure may not be reusable, the design pattern underlying it often
is.

- Design patterns also reduce the effort required to learn a class library. Each
class library has a certain design "culture" characterized by the set of pat
terns used implicitly by its developers. A specific design pattern is typically
reused in different places in the library. A client should therefore learn these
patterns as a first step in learning the library. Once they are familiar with
the patterns, they can reuse this understanding. Moreover, because some
patterns appear in other class libraries, it is possible to reuse the knowledge
about patterns when learning other libraries as well.

5 Related Work

Design patterns are an approach to software reuse. Krueger [20] introduces the
following taxonomy to characterize different reuse approaches: software com
ponent reuse, software schemas, application generators, transformation systems,
and software architectures. Design patterns are related to both software schemas
and reusable software architectures. Software schemas emphasize reusing ab
stract algorithms and data structures. These abstractions are represented for
mally so they can be instantiated automatically. The Paris system [18] is repre
sentative of schema technology. Design patterns are higher-level than schemasj
they focus on design structures at the level of collaborating classes and not at
the algorithmic level. In addition, design patterns are not formal descriptions
and cannot· be instantiated directly. We therefore prefer to view design patterns
as reusable software architectures. However, the examples Krueger lists in this
category (blackboard architectures for expert systems, adaptable database sub
systems) are all coarse-grained architectures. Design patterns are finer-grained
and therefore can be characterized as reusable micro-architectures.

Most research into patterns in the software engineering community has been
geared towards building knowledge-based assistants for automating the appli-

www.manaraa.com

374

cation of patterns for synthesis (that is, to write programs) and analysis (in
debugging, for example) [13, 24]. The major difference between our work and
that of the knowledge-based assistant community is that design patterns encode
higher-level expertise. Their work has tended to focus on patterns like enumer
ation and selection, which can be expressed directly as reusable components
in most existing object-oriented languages. We believe that characterizing and
cataloging higher-level patterns that designers already use informally has an
immediate benefit in teaching and communicating designs.

A common approach for reusing object-oriented software architectures are
object-oriented frameworks [32]. A framework is a codified architecture for a
problem domain that can be adapted to solve specific problems. A framework
makes it possible to reuse an architecture together with a partial concrete im
plementation. In contrast to frameworks, design patterns allow only the reuse
of abstract micro-architectures without a concrete implementation. However,
design patterns can help define and develop frameworks. Mature frameworks
usually reuse several design patterns. An important distinction between frame
works and design patterns is that frameworks are implemented in a programming
language. Our patterns are ways of using a programming language. In this sense
frameworks are more concrete than design patterns.

Design patterns are also related to the idioms introduced by Coplien [7].
These idioms are concrete design solutions in the context of C++. Coplien "fo
cuses on idioms that make C++ programs more expressive." In contrast, design
patterns are more abstract and higher-level than idioms. Patterns try to ab
stract design rather than programming techniques. Moreover, design patterns
are usually independent of the implementation language.

There has been interest recently within the object-oriented community [8] in
pattern languages for the architecture ofbuildinga and communities as advocated
by Christopher Alexander in The Timelel8 Way of Building [2]. Alexander's
patterns consist of three parts:

- A context that describes when a pattern is applicable.
- The problem (or "system of confiicting forces") that the pattern resolves in

that context.
- A configuration that describes physical relationships that solve the problem.

Both design patterns and Alexander's patterns share the notion of con
text/problem/configuration, but our patterns currently do not form a complete
system of patterns and so do not strictly define a pattern language. This may
be because object-oriented design is still a young technology-we may not have
had enough experience in what constitutes good design to extract design pat
terns that cover all phases of the design process. Or this may be simply because
the problems encountered in software design are different from those found in
architecture and are not amenable to solution by pattern languages.

Recently, Johnson has advocated pattern languages to describe how to use
use object-oriented frameworks [16]. Johnson uses a pattern language to explain
how to extend and customize the Hotdraw drawing editor framework. However,

www.manaraa.com

375

these patterns are not design patterns; they are more descriptions of how to
reuse existing components and frameworks instead of rules for generating new
designs.

Coad's recent paper on object-oriented patterns [6] is also motivated by
Alexander's work but is more closely related to our work. The paper has seven
patterns: "Broadcast" is the same as Observer, but the other patterns are dif
ferent from ours. In general, Coad's patterns seem to be more closely related to
analysis than design. Design patterns like Wrapper and Flyweight are unlikely to
be generated naturally during analysis unless the analyst knows these patterns
well and thinks in terms of them. Coad's patterns could naturally arise from a
simple attempt to model a problem. In fact, it is hard to see how any large model
could avoid using patterns like "State Acr088 a Collection" (which explains how
to use aggregation) or "Behavior Across a Collection" (which describes how to
distribute responsibility among objects in an aggregate). The patterns in our
catalog are typical of a mature object-oriented design, one that has departed
from the original analysis model in an attempt to make a system of reusable
objects. In practice, both types of patterns are probably useful.

6 Conclusion

Design patterns have revolutionised the way we think about, design, and teach
object-oriented systems. We have found them applicable in many stages of the
design process-initial design, reuse, refactoring. They have given us a new level
of abstraction for system design.

New levels of abstraction often afford opportunities for increased automa.
tion. We are investigating how interactive tools can take advantage of design
patterns. One of these tools lets a user explore the space of objects in a running
program and watch their interaction. Through observation the user may discover
existing or entirely new patterns; the tool lets the user record and catalog his
observations. The user may thus gain a better understanding of the application,
the libraries on which it is based, and design in general.

Design patterns may have an even more profound impact on how object
oriented systems are designed than we have discussed. Common to most patterns
is that they permit certain aspects of a system to be varied independently. This
leads to thinking about design in terms of "What aspect of a design should be
variable?" Answers to this question lead to certain applicable design patterns,
and their application leads subsequently to modification of a design. We refer to
this design activity as variation-oriented design and discuss it more fully in
the catalog of patterns [12].

But some caveats are in order. Design patterns should not be applied in
discriminately. They typically achieve flexibility and variability by introducing
additional levels of indirection and can therefore complicate a design. A design
pattern should only be applied when the flexibility it affords is actually needed.
The consequences described in a pattern help determine this. Moreover, one is

www.manaraa.com

376

often tempted to brand any new programming trick a new design pattern. A true
design pattern will be non-trivial and will have had more than one application.

We hope that the design patterns described in this paper and in the compan
ion catalog will provide the object-oriented community both a common design
terminology a.nd a repertoire of reusable designs. Moreover, we hope the catalog
will motivate others to describe their systems in terms of design patterns and
develop their own design patterns for others to reuse.

7 Acknowledgements

The authors wish to tha.nk Doug Lea a.nd Kent Beck for detailed comments and
discussions about this work, and Bruce Anderson and the participants of the
Architecture Handbook workshops at OOPSLA '91 and '92.

References

1. B. Adelson and Solowa.y E. The role of doma.in experience in softwa.re design.
IEEE n-anlactionl on Software Engineering, 11(11):1351-1360, 1985.

2. Christopher Alexa.nder. The Timele .. Way of Building. Oxford University Press,
New York, 1979.

3. Associa.tion for Computing Ma.chinery. Addendum to the Proceeding.,
Object-Oriented Programming Sy.tem., Language., and Application. Oonference.
Phoenix, AZ, October 1991.

4. A880cia.tion for Computing Ma.c:hinery. Addendum to the Proceeding', Object
Oriented Programming Sylteml, Languagu, and Application, Oonference. Va.n
couver, British Columbia., October 1992.

5. Kent Beck and Wa.rd Cunningham. A la.bora.tory for tea.ching object-oriented
thinking. In Object-Oriented Programming SYltem" Language" and Application.
Oonference Proceeding'. pa.ges 1-6. New Orleans, LA. October 1989.

6. Peter Coact Object-oriented patterns. Oommunicationl of the AOM, 35(9):152-
159. September 1992.

7. James O. Coplien. Advanced C++ Programming Style, and Idiom •. Addiaon
Wesley. Reading. MasaechuseUs. 1992.

8. Ward Cunningham and Kent Beck. Constructing abstractions for object-oriented
applications. Technical Report CR-87-25, Computer Research Laboratory. Tek
tronix. Inc .• 1987.

9. Bill Curtis. Cognitive issues in reusing software artifacts. In Ted J. Biggerstaff and
Alan J. Peru. editors, Software Rewabilitv, Volume II, pages 269-287. Addison
Wesley, 1989.

10. Thomas Eggenschwiler and Erich Gamma. The ET++SwapaMana.ger: Using ob
ject technology in the financial engineering doma.in. In Object-Oriented Program
ming Sf/Item., Language,. and ApplicatiOfll Oonference Proceeding'. pages 166-
178, Vancouver, British Columbia, October 1992.

11. Erich Gamma. Obje1ctorientierte Software-Entwic1clung am Bei.piel von ET++:
De.ign-Mwter, KlClllenbibliothe1c, Werk.zeuge. Springer-Verlag, Berlin, 1992.

12. Erich Gamma. Richard Helm, Ralph JohnsoD. and John Vlisaidea. A catalog of
object-oriented design paUerns. Technical Report in prepa.ration. IBM Research
Division. 1992.

www.manaraa.com

377

13. Mehdi T. Harandi and Frank H. Young. Software design using reuable algorithm
abatraction. In In Proc. Snd IEEE/BCS ConI. on Software Engineering, pages
94-97, 1985.

14. Richard Helm, Tien Huynh, Catherine Lassel, and Kim Marriott. A linear con
straint technology !or user interfaces. In Graphic. Interface, pages 301-309, Van
couver, British Columbia, 1992.

15. Richard Helm, Tien Huynh, Kim Marriott, and John Vliaaides. An object-oriented
architecture for constraint-based graphical editing. In Proceeding. 01 the Third Eu
rographic. Worklhop on Object-Oriented Graphic.,pages 1-22, Champery, Switzer
land, October 1992. Also available as IBM Research Division Technical Report
RC 18524 (79392).

16. Ralph Johnson. Documenting frameworks using patterna. In Object-Oriented Pro
gramming Sr,tem" Language" and ApplicatioN Conlerence Proceeding', pages
63-76, Vancouver, BC, October 1992.

17. Ralph E. Johnson, Carl McConnell, and J. Michael Lake. The RTL system: A
framework for code optimisation. In Robert Giegerich and Suan L. Graham,
editors, Code Generation-Concepti, Too", Technique •. Proceeding. 01 the Inter
national Worbhop on Code Generation, pages 255-274, Dagstuhl, Germany, 1992.
Springer-Verlag.

18. S. Katz, C.A. Richter, and K.-S. The. Paris: A system for reuaing partially in
terpreted schemas. In Proc. of the Ninth International Conference on SojtVJare
Engineering, 1987.

19. Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view
controller uaer interface paradigm in Smalltalk-80. Journal 01 Object-Oriented
Programming, 1(3):26-49, August/September 1988.

20. Charles W. Krueger. Software reuse. ACM Computing Survey" 24(2), June 1992.
21. Mark A. Linton. Encapsulating a C++ library. In Proceeding' of the 1995

USENIX C++ Conference, pages 57-66, Portland, OR, Augut 1992.
22. Mark A. Linton, John M. Vlissides, and Paul R. Calder. Composing user interfaces

with InterViews. Computer, 22(2):8-22, February 1989.
23. William F. Opdyke and Ralph E. Johnson. Refactoring: An aid in designing appli

cation frameworks and evolving object-oriented systems. In SOOPPA Conference
Proceeding', pages 145-161, Marist College, Poughkeepsie, NY, September 1990.

24. Charles Rich and Richard C. Waters. Formalising reusable software components
in the programmer's apprentice. In Ted J. Biggerstaff and Alan J. Pedis, editors,
Software Rewability, Volume II, pages 313-343. Addison-Wesley, 1989.

25. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorenaon. Object-Oriented Modeling and Duign. Prentice Hall, Engle
wood Clift's, New Jersey, 1991.

26. Elliot Soloway and Kate Ehrlich. Empirical studies of programming knowledge.
IEEE 7\-an,action, on Software Engineering, 10(5), September 1984.

27. James C. ·SpoMer and Elliot Soloway. Novice mistakes: Are the folk wisdoms
correct? Communication. 01 the ACM, 29(7):624-632, July 1992.

28. ParcPlace Systems. ParcPlace Sy.tem., Objectworb/Smalltallc Relea.e .4 Uler,
Guide. Mountain View, California, 1990.

29. David Ungar and Randall B. Smith. Self: The power of simplicity. In Object
Oriented Programming Sf/deml, Languagel, and Application. Conference Proceed
ing', pagel 227-242, Orlando, Florida, October 1987.

www.manaraa.com

378

30. John M. Vlisside. and Mark A. Linton. Unidraw: A framework for building
domain-spec:ifl.c graphical editors. ACM :&an.actiom on Information Sy.tefnl,
8(3):237-268, . .July 1990.

31. Andre Weinand, Erich Gamma, and Rudolf Marty. ET++-An object-oriented
application framework in C++. In Object-Oriented Programming Syltem., Lan
guagel, and Applicatiom Conference Proceeding., pages 46-57, San Diego, CA,
September 1988.

32. Rebecca WirU-Brock and Ralph E. Johnson. A survey of current research in
object-oriented design. Communication. of the ACM, 33(9):104-124, 1990.

www.manaraa.com

379

A Catalog Overview

The following summarizes the patterns in our current catalog.

Abstract Factory provides an interface for creating generic product objects. It re
moves dependencies on concrete product classes from clients that create product
objects.

Adapter makes the protocol of one class conform to the protocol of another.
Bridge separates an abstraction from its implementation. The abstraction may vary

its implementations transparently and dynamically.
Builder provides a generic interface for incrementally constructing aggregate objects.

A Builder hides details of how objects in the aggregate are created, represented,
and composed.

Comm.and objectifies the request for a service. It decouples the creator of the request
for a service from the executor of that service.

Composite treats multiple, recursively-composed objects as a single object.
Chain of Responsibility defines a hierarchy of objects, typically arranged from

more specific to more general, having responsibility for handling a request.
Factory Method lets base classes create instances of subclass-dependent objects.
Flyweight defines how objects can be shared. Flyweights support object abstraction

at the finest granularity.
Glue defines a single point of access to objects in a subsystem. It provides a higher

level of encapsulation for objects in the subsystem.
Interpreter defines how to represent the grammar, abstract syntax tree, and inter-

preter for simple languages.
Iterator objectifies traversal algorithms over object structures.
Mediator decouples and manages the collaboration between objects.
Memento opaquely encapsulates a snapshot of the internal state of an object and is

used to restore the object to its original state.
Observer enforces synchronization, .coordination, and consistency constraints be

tween objects.
Prototype creates new objects by cloning a prototypical instance. Prototypes permit

clients to install and configure dynamically the instances of particular clasaes they
need to instantiate.

Proxy acts as a convenient surrogate or placeholder for another object. Proxies can
restrict, enhance, or alter an object's properties.

Solitaire defines a one-of-a-kind object that provides access to unique or well-known
services and variables.

State lets an object change its behavior when its internal state changes, effectively
changing its class.

Strategy objectifies an algorithm or behavior.
Template Method implements an abstract algorithm, deferring specific steps to sub

class methods.
Walker centralizes operations on object structures in one class so that these opera

tions can be changed independently of the clasaes defining the structure.
Wrapper attaches additional services, properties, or behavior to objects. Wrappers

can be nested recursively to attach multiple properties to objects.

www.manaraa.com

380

ABSTRACT FACTORY Object Creational

Intent
Abstract Factory provides an interface for creating generic product objects. It
removes dependencies on concrete product classes from clients that create prod
uct objects.

Motivation
Consider a user interface toolkit that supports multiple standard look-and-feela,
say, Motif and Open Look, and provides difFerent scroll bars for each. It is undesir
able to hard-code dependencies on either standard into the application-the choice
~f look-and-feel and hence scroll bar may be defened until run-time. Specifying
the class of scroll bar limits flexibility and reusability by forcing a commitment
to a particular class instead of a particular protocol. An Abstract Factory avoids
this commitment.

An abstract bue cl WindowKit declares services for creating scroll bars and
other controla. Controls for Motif and Open Look are derived from common ab
stract classes. For each look-and-feel there is a concrete subclass of WindowKit
that defines services to create the appropriate control. For example, the Create
ScrollBar() operation on the MotifKit would instantiate and return a Motif scroll
bar, while the cone.ponding operation on the OpenLookKit return. an Open Look
scroll bar. Clients access a .pecific kit through the interface declared by the Win
dowKit cl , and they acceu the controls created by a kit only by their generic
interface.

-----1 ':Opri......, ,
L-__ ~___'

I

L----------------i '=MoI~ ,
Applicability

When the classes of the product objects are variable, and dependencies on the.e
classes must be removed from a client application.

When variation. on the creation, composition, or representation of aggregate ob
jects or .ub.y.tem. must be removed from a client application. Difference. in
configuration can be obtained by using dift"erent concrete factories. Clients do not
explicitly create and configure the aggregate or .ubsy.tem but defer this re.ponsi
bility to an AbatractFactory cl Client. instead call a method of the Ab.tract
Factory that retuma an object providing access to the aggregate or subsystem.

www.manaraa.com

381

Participants

• A bstractFactory

- declares a. generic interfa.ce for operations tha.t crea.te generic product ob
jects.

• Concrete Factory

- defines the opera.tions tha.t crea.te specific product objects.

• GenericProduct

- decla.res a generic interfa.ce for product objects.

• SpeciflcProduct

defines a product object created by the corresponding concrete fa.ctory.

- all product cluses must conform to the generic product interfa.ce.

Collaborations

• Usually a single instance of a. ConcreteFa.ctory class is created at run-time. This
concrete factory creates product objects ha.ving a. pa.rticular implementa.tion.
To use different product objects, clients must be configured to use a. different
concrete fa.ctory.

• Abstra.ctFa.ctory defers creation of product objects to its ConcreteFa.ctory sub
ela.sses.

Diagram
--,
~
~

A I p

I I eanc __ ryt
--.y2

...... 1'nIducIA() ? -..:tAl) 0-

...... -01 -"""*-0

Consequences
Abstra.ct Factory provides a focus during development for changing and controlling
the types of objects created by clients. Because a fa.ctory objectifies the responsi
bility for and the process of creating product objects, it isolates clients from im
plementation classes. Only generic interfa.ces are visible to clients. Implementation
class names do not appear in client code. Clients can be defined and implemented
solely in terms of protocols instead of classes.

Abstra.ct fa.ctories that encode clus names in operation signatures can be difficult
to extend with new kinds of product objects. This can require redeclaring the
AbstractFactory and all ConcreteFa.dories. Abstract factories can be composed
with subordinate fadory objects. Responsibility for creating objects is delegated

www.manaraa.com

382

to these sub-factories. Composition of a.bstra.ct fa.ctories provides a. simple way to
extend the kinds of objects a. factory is responsible for crea.ting.

Examples
InterViews uses the "Kit- suffix [21] to denote abstract factory dasses. It defines
WidgetKit ud DialogKit abstract factories for generating look-ud-feel-specific
user interface objects. InterViews also includes a LayoutKit that generates differ
ent composition objects depending on the layout desired.

ET++ [31] employs the Abstract Factory pattern to achieve porta.bility across
different window systems (X Windows ud Sun View. for example). The Win
dowSystem a.bstract base class defines the interface for creating objects represent
ing window system resources (for example, MakeWindow, MakeFont, MakeColor).
Concrete subclasses implement the interfaces for a specific window system. At run
time ET++ crea.tes u instance of a concrete WindowSystem subclass that creates
system resource objects.

Implementation
A novel implementation is possible in Small talk. Because dasses are first-dass
objects, it is not necessary to have distinct Conc:reteFactory subclasses to create
the variations in products. Instead, it is possible to store classes that create these
products in variables inside a concrete factory. These dasses create new instances
on behalf of the concrete factory. This technique permits variation in product ob
jects lot finer levels of granularity than by using distinct concrete factories. Only
the classes kept in variables need to be changed.

See Also
Factory Method: Abstract Factories are often implemented using Factory Meth
ods.

www.manaraa.com

383

STRATEGY Object Behavioral

Intent
A Strategy objectifies an algorithm or behavior, allowing the algorithm or be
havior to be varied independently of its clients.

Motivation
There are many algorithms for breaking a text stream into lines. It is impoui
ble to hard-wire all such algorithms into the cluses that require them. Different
algorithms might be appropriate at different times.

One way to addre.. this problem is by defining separate cl&88es that encapsulate
the different linebreaking algorithms. An algorithm objectified in this way is called
a Strategy. InterViews [22] and ET++ [31] use this approach.

Suppose a Composition cl&88 is responllible for maintaining and updating the
line breaks of text displayed in a text viewer. Linebreaking strategies are not
implemented by the cl&88 Composition. Instead, they are implemented separately
by subcluses of the Compositor clus. Compositor subcluses implement different
strategies as follows:

- Simple Compositor implements a simple strategy that determines line
breaks one at a time.

- TeXCompositor implements the 1EXalgorithm for finding line breaks. This
strategy tries to optimise line breaks globally, that is, one paragraph at a
time.

- ArrayComp08itor implements a strategy that is used not for text but for
breaking a collection of icons into rows. It selects breaks so that each row has
a fixed number of items.

A Composition maintains a reference to a Compositor object. Whenever a Com
position is required to find line breaks, it forwards this responsibility to its current
Compositor object. The client of Composition specifies which Compositor should
be used by installing the corresponding Compositor into the Composition (see the
diagram below).

Applicability
Whenever an algorithm or behavior should be selectable and replaceable at run
time, or when there exist variations in the implementation of the algorithm, re
flecting different space-time tradeofl's, for example.

Use a Strategy whenever many related cluses differ only in their behavior. Strate
gies provide a way to configure a single cl&88 with one of many behaviors.

www.manaraa.com

Participants

• Strategy

384

- objectifies and encapsulates an algorithm or behavior.

• StrategyContext

- maintain. a reference to a Strategy object.

- maintains the state manipulated by the Strategy.

- can be configured by passing it an appropriate Strategy object.

Collaborations

• Strategy manipulates the StrategyContext. The StrategyContext normally
passes itself as an argument to the Strategy's methods. This allows the Strategy
to call back the StrategyContext as required.

• StrategyContext forwards requests from its clients to the Strategy. Usually
clients pass Strategy objects to the StrategyContext. Thereafter clients only
interact with the StrategyContext. There is often II. family of Strategy classes
from which a client can choose.

Diagram
__ 11011""

CompoalUon

RapU() 0- - -- ---t count. ~->C~bleaIaI) ,
PIc:k()

breaks
compositor

~

I~ I
~osltlon

ConyJose() I

I I
AnayCompoIltor I TIXCompo8ltor I L SlmpllCompolitor J
Compoea() ICo~) IIC~() I

Consequences
Strategies can define a family of policies that a StrategyContext can reuse. Sepa
rating a Strategy from its context increases reusa.bility, because the Strategy may
vary independently from the StrategyContext.

Variations on an algorithm can also be implemented with inheritance, that is, with
an abstract class and subclasses that implement different behaviors. However, this
hard-llires the implementation into a specific class; it is not possible to change

www.manaraa.com

385

behaviors dynamically. This results in many related classes that dift'er only in
some behavior. It is often better to break out the variations of behavior into their
own claaaes. The Stn.tegy pattern thus increases modularity by localiling complex
behavior. The typical alternative is to scatter conditional statements throughout
the code that select the behavior to be performed.

Implementation
The interface of a Strategy and the common functionality among Strategies is
often factored out in an abstract clau. Strategies should avoid maintaining state
across invocations so that they can be used repeatedly and in multiple contexts.

Examples
In the RTL System for compiler code optimization [17]. Strategies define dift'erent
register allocation schemes (RegiaterAllocator) and different instruction set sched
uling policies (RISCscheduler. CISCscheduler). This gives ftexibility in targeting
the optimizer for dift'erent machine architectures.

The ET++SwapsManager calculation engine framework [10] computes prices for
different financial instruments. Its key abstractions are Instrument and Yield
Curve. Different instruments are implemented as subcluaea of Instrument. The
Yield Curve calculates discount factors to present value future cash iows. Both
of these claues delegate some behavior to Strategy objects. The framework pro
vides a family of Strategy classes that define algorithms to generate cash iows. to
value swaps. and to calculate discount factora. New calculation engines are created
by parameterizing Instrument and YieldCurve with appropriate Strategy objects.
This approach supports mixing and matching existing Strategy implementations
while permitting the definition of new Strategy objects.

See Also
Walker often implements algorithms over recursive object structures. Walkers can
be considered compound strategies.

www.manaraa.com

386

WRAPPER Compound Structural

Intent
A Wrapper aUaches additional services. properties. or behavior to objects. Wrap
per_ can be nested recursively to attach multiple properties to object..

Motivation
Somet.imes it is desirable to attach properties to individual object_ instead of
clauCi. In a graphical uer int.erface toolkit., for example. propertie_ such aB bor
ders or _ervices like acroIling _hould be freely aUachable to any Uler interface
component..

One way to aUach properties to component. is via inheritance. Inheriting a border
from a base clUB will give all instances of it. derived classes a border. This is
inflexible becaulC t.he choice of border is made statica1l;y. It is more flexible t.o let
a client decide how and when to decorate the component with a border.

This can be achieved b:r enclosing the component in another object that adds
the border. The enclosing object, which must be transparent to clients of the
component.. is called a Wrapper. This transparency is the ke;y for nesting Wrap
per_ recuraivcl;y to con_truct. more complex user int.erface component.s. A Wrapper
forwards requClt. to it.s enclOlCd user int.erface component. The Wrapper may per
form addit.ional act.ions before or after forwarding the request., such aB drawing a
border around a user int.erface component..

T;ypical properties or services provided by ulCr interface Wrappers are:

- decoration_ like borders. shadows, or scroll bars; or

- ICrvices like acrolling or sooming.

The following diagram illu_trates the composition of a Text.View with a Border
Wrapper and a ScrollWrapper to produce a bordered, acrollable Text.View.

(BorderWrapper)
component _----:r-.... 1-!:(SC~roI~I!!W!!r8~p~pe!!!!r)_I

component """t-4-.!~!!.~xt~V~'ew~)_-I

Applicability
When properties or behaviors should be attachable t.o individual objects dynam
ically and transparently.

When there is a need to extend c:lasses in an inheritance hierarchy. Rather than
modifying their base clus, instances are enclOlCd in a Wrapper that adds the
additional behavior and propertie&. Wrapper_ thus provide an alternative to ex
tending the base class without. requiring it. modification. This is of particular
concern when the b&IC clau comes from a cl&ll librar;y that cannot be modified.

www.manaraa.com

387

Participants

• Component

- the object to which additional properties or behaviors are attached.

• Wrapper

- encapsulates and enhances its Component. It defines an interface that con
forms to its Component's.

- Wrapper maintains a reference to its Component.

Collaborations
• Wrapper forwards requests to its Component. It may optionally perform addi

tional operations before and after forwarding the request.

Diagram

I Button

I Draw()

Conseq uences

I~I
IDtawo I

I I
I BordIIrWrIpptr

I DnIw() 0- - --

banIeIWIdth

component

--------1 draw Border; ;n
CC1mponent->DrawO

Using Wrappers to add properties is more :amble than using inheritance. With
Wra.ppers, properties can be attached and detached a.t run-time simply by chang
ing the Wrapper. Inheritance would require creating a new class for each property
composition (for example, BorderdScrollableTextView, BorderedTextView). This
clutters the name space of classes unnecessarily and should be avoided. Moreover,
providing different Wrapper classes for a specific Component class allows mixing
and matching behaviors and properties.

Examples
Most object-oriented user interface toolkits use Wrappers to add graphical em
bellishments to widgets. Examples include interViews [22], ET++ [31], and the
ParcPlace Smalltalk class library [28]. More exotic applications of Wrappers are
the DebuggingGlyph from interViews and the PassivityWrapper from ParcPlace
Smalltalk. A DebuggingGlyph prints out debugging information before and after
it forwards a layout request to its enclosed object. This trace information can be
used to analyse and debug the layout behavior of objects in a complex object
composition. The PaasivityWrapper can enable or disable user interactions with
the enclosed object.

Implementation
Impl~mentation of a set of Wrapper classes is simplified by an abstract base class,
which forwards all requesta to its component. Derived classes can then override
only those operations for which they want to add behavior. The abstract base
class ensures that all other requests are pused automatically to the Component.

www.manaraa.com

388

See Also
Adapter: A Wrapper is differl!nt from an Adapter, because a Wrapper only changes
an object's properties and not its interlace; an Adapter will give an object a com
pletely :aew interface.

Composite: A Wrapper can be considered a. degenera.te Composite with only one
component. However, a Wrapper adds additional services-it is not intented for
object aggregation.

www.manaraa.com

John Guttag

Abstract Data Types and the Development
of Data Structures

Communications of the ACM, Vol. 20 (6), 1977
pp.396-404

www.manaraa.com

Data: Abstraction,
Definition, and Structure

B. Wegbreit
Editor

Abstract Data Types
and the Development
of Data Structures
John Guttag
University of Southern California

Copyright C> 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per
mission of the Association for Computing Machinery.

This work was supported in part by the National Science Foun
dation under grant number MCS76-06089.

A version of this paper was presented as the SIGPLAN/SIG
MOD Conference on Data: Abstraction, Definition, and Structure,
Salt Lake City, Utah, March 22-24, 1976.

Author's address: Computer Science Department, University of
Southern California, Los Angeles, CA 90007.

Communications
of
the ACM

June 1977
Volume 20
Number 6

www.manaraa.com

392

Abstract data types can playa significant role in the
development of software that is reliable, efficient, and
flexible. This paper presents and discusses the applica
tion of an algebraic technique for the specification of
abstract data types. Among the examples presented is a
top-down development of a symbol table for a block
structured language; a discussion of the proof of its
correctness is given. The paper also contains a brief
discussion of the problems involved in constructing
algebraic specifications that are both consistent and
complete.

Key Words and Phrases: abstract data type, cor
rectness proof, data type, data structure, specification,
software specification

CR Categories: 4.34, 5.24

1. Introduction

Dijkstra [4] and many others have made the point
that the amount of complexity that the human mind can
cope with at any instant in time is considerably less than
that embodied in much of the software that one might
wish to build. Thus the key problem in the design and
implementatiop. of large software systems is reducing
the amount of complexity or detail that must be consid
ered at anyone time. One way to do this is via the
process of abstraction.

One of the most significant aids to abstraction used
in programming is the self-contained subroutine. At the
point where one decides to invoke a subroutine, one
can (and most often should) treat it as a "black box." It
performs a specific arbitrarily abstract function by
means of an unprescribed algorithm. Thus, at the level

www.manaraa.com

393

where it is invoked, it separates the relevant detail of
"what" from the irrelevant detail of "how." Similarly,
at the level where it is implemented, it is usually unnec
essary to complicate the "how" by considering the
"why," i.e. the exact reasons for invoking a subroutine
often need not be of concern to its implementor. By
nesting subroutines, one may develop a hierarchy of
abstractions.

Unfortunately, the nature of the abstractions that
may be conveniently achieved through the use of sub
routines is limited. Subroutines, while well suited to the
description of abstract events (operations), are not par
ticularly well suited to the description of abstract ob
jects. This is a serious drawback, for in a great many
applications the complexity of the data objects to be
manipulated contributes substantially to the overall
complexity of the problem.

2. The Abstraction of Data

The large knot of complexly interrelated attributes
associated with a data object may be separated accord
ing to the nature of the information that the attributes
convey regarding the data objects that they qualify.
Two kinds of attributes, each of which may be studied
in isolation, are:
(1) those that describe the representation of objects

and the implementations of the operations associ
ated with them in terms of other objects and opera
tions, e.g. in terms of a physical store and a proces
sor's order code;

(2) those that specify the names and define the ab
stract meanings of the operations associated with

www.manaraa.com

394

an object. Though these two kinds of attributes are
in practice highly interdependent, they represent
logically independent concepts.

The emphasis in this paper is on the second kind of
attribute, i.e. on the specification of the operations
associated with classes of data objects. At most points
in a program one is concerned solely with the behav
ioral characteristics of a data object. One is interested
in what one can do with it, not in how the various
operations on it are implemented. The analogy with a
closed procedure is exact. More often than not, one
need be no more concerned with the underlying repre
sentation of the object being operated on than one
is with the algorithm used to implement an invoked
procedure.

If at a given level of refinement one is interested
only in the behavioral characteristics of certain data
objects, then any attempt to abstract data must be
based upon those characteristics, and only those char
acteristics. The introduction of other attributes, e.g. a
representation, can only seI":'e to cloud the relevant
issues. We use the term "abstract data type" to refer to
a class of objects defined by a representation-independ
ent specification.

The class construct of SIMULA 67 [3] has been
used as the starting point for much of the more recent
work on embedding abstract types in programming
languages, e.g. [14, 16, 18]. While each of these offers
a mechanism for binding together the operations and
storage structures representing a type, they offer no
representation-independent means for specifying the
behavior of the operations. The only representation
independent information that one can supply are the
domains and ranges of the various operations. One

www.manaraa.com

395

could, for example, define a type Queue (of Items)
with the operations

NEW:
ADD:
FRONT:
REMOVE:
IS-EMPTY?:

~ Queue
Queue x I tern ~ Queue
Queue ~ Item
Queue ~ Queue
Queue ~ Boolean

Unfortunately, however, short of supplying a represen
tation, the only mechanism for denoting what these
operations "mean" is a judicious choice of names.
Except for intuitions about the meaning of such words
as Queue and FRONT, the operations might just as
easily be defining type Stack as type Queue. The do
main and range specifications for these two types are
isomorphic. To rely on one's intuition about the mean
ing of names can be dangerous even when dealing with
familiar types [19]. When dealing with unfamiliar types
it is almost impossible. What is needed, therefore, is a
mechanism for specifying the semantics of the opera
tions of the type.

There are, of course, many possible approaches to
the specification of the semantics of an abstract data
type. Most, however, can be placed in one of two
categories: operational or definitional. In an opera
tional specification, instead of trying to describe- the
properties of the abstract data type, one gives a recipe
for constructing it. One begins with some well-under
stood language or discipline and builds a model for the
type in terms of that discipline. Wulf [24], for example,
makes good use of sequences in modeling various data
structures.

The operational approach to formal specification
has many advantages. Most significantly, operational

www.manaraa.com

396

specifications seem to be relatively (compared to defi
nitional specifications) easily constructed by those
trained as programmers - chiefly because the construc
tion of operational specifications so closely resembles
programming. As the operations to be specified grow
complex, however, operational specifications tend to
get too long (see, for example, Batey [1]) to permit
substantial confidence in their aptness. As the number
of operations grows, problems arise because the rela
tions among the operations are not explicitly stated,
and inferring them becomes combinatorially harder.

The most serious problem associated with opera
tional specifications is that they almost always force one
to overspecify the abstraction. By introducing extra
neous detail, they associate nonessential attributes with
the type. This extraneous detail complicates the prob
lem of proving the correctness of an implementation by
introducing conditions that are irrelevant, yet never
theless must be verified. More importantly, the intro
duction of extraneous detail places unnecessary con
straints on the choice of an implementation and may
potentially eliminate the best solutions to the problem.

Axiomatic definitions avoid this problem. The alge
braic approach used here owes much to the work of
Hoare [13] (which in tum owes much to Floyd [5]) and
is closely related to Standish's "axiomatic specifica
tions" [22] and Zilles' "algebraic specifications" [25].
Its formal basis stems from the heterogeneous algebras
of Birkhoff and Lipson [2]. An algebraic specification
of an abstract type consists of two pairs: a syntactic
specification and a set of relations. The syntactic speci
fication provides the syntactic information that many
programming languages already require: the names,
domains, and ranges of the operations associated with

www.manaraa.com

397

domains, and ranges of the operations associated with
the type. The set of relations defines the meanings of
the operations by stating their relationships to one
another.

3. A Short Example

Consider type Queue (of Items) with the operations
listed in the previous section. The syntactic specifica
tion is as above:

NEW:
ADD:
FRONT:
REMOVE:
IS.EMPTY?:

~ Queue
Queue x Item ~ Queue
Queue~ Item
Queue ~ Queue
Queue ~ Boolean

The distinguishing characteristic of a queue is that it is a
first in-first out storage device. A good axiomatic defi
nition of the above operations must therefore assert
that and only that characteristic. The relations (or ax
ioms) below comprise just such a definition. The mean
ings of the axioms should be relatively clear. (" =" has
it~ standard meaning, "q" and "i" are typed free varia
bles, and "error" is a distinguished value· with the
property that the value of any operation applied to an
argument list containing error is error, e.g.fn{Xh ... ,
X h error, x i+2, • • • ,X n) = error.)

(1) IS-EMPTY? (NEW) = true
(2) IS-EMPTY? (ADD(q,i» = false
(3) FRONT(NEW) = error
(4) FRONT (ADD(q,i» = if IS-EMPTY? (q)

then i
else FRONT(q)

(5) REMOVE(NEW) = error

www.manaraa.com

398

(6) REMOVE (ADD(q,i» = if IS-EMPTY? (q)
then NEW
else ADD(REMOVE(q),i)

Note that this set of axioms involves no assumption
about the attributes of type Item. In effect Item is a
parameter of type Type, and the specification may be
viewed as defining a type schema rather than a single
type. This will be the case for many algebraic type
specifications.

With some practice, one can become quite adept at
reading algebraic axiomatizations. Practice also makes
it easier to construct such specifications; see Guttag
[11]. Unfortunately, it does not make it trivial. It is not
always immediately clear how to attack the problem.
Nor, once one has constructed an axiomatization, is it
always easy to ascertain whether or not the axiomatiza
tion is consistent and sufficiently complete. The mean
ing of the operations is supplied by a set of individual
statements of fact. If any two of these are contradic
tory, the axiomatization is inconsistent. If the combina
tion of statements is not sufficient to convey all of the
vital information regarding the meaning of the opera
tions of the type, the axiomatization is not sufficiently
complete.!

Experience indicates that completeness is, in a
practical sense, a more severe problem than consist
ency. If one has an intuitive understanding of the type
being specified, one is unlikely to supply contradictory
axioms. It is, on the other hand, extremely easy to
overlook one or more cases. Boundary conditions, e.g.

1 Sufficiently complete is a technical notion first developed in
Guttag [8]. It differs considerably from both the notion of complete
ness commonly used in logic and that used in Zilles [25].

www.manaraa.com

399

REMOVE(NEW), are particularly likely to be over
looked.

In an attempt to ameliorate this problem, we have
devised heuristics to aid the user in the initial presenta
tion of an axiomatic specification of the operations of
an abstract type and a system to mechanically "verify"
the sufficient-completeness of that specification. As the
first step in defining a new type, the user would supply
the system with the syntactic specification of the type
and an axiomatization constructed with the aid of the
heuristics mentioned above. Given this preliminary
specification, the system would begin to prompt the
user to supply the additional information necessary for
the system to derive a sufficiently complete axiom set
for the operations. A detailed look at sufficient-com
pleteness is contained in Guttag [8, 9].

4. An Extended Example

A common data structuring problem is the design of
the symbol table component of a compiler for a block
structured language. Many sources contain good dis
cussions of various symbol table organizations. Setting
aside variations in form, the basic operations described
vary little from source to source. They are:

!NIT:
ENTERBLOCK:
LEA VEBLOCK:

IS-INBLOCK?:

ADD:

Allocate and initialize the symbol table.
Prepare a new local naming scope.
Discard entries from the most recent scope en
tered, and reestablish the next outer scope.
Has a specified identifier already been declared
in this scope? (Used to avoid duplicate declara
tions.)
Add an identifier and its attributes to the symbol
table.

www.manaraa.com

RETRIEVE:

400

Return the attributes associated (in the most
local scope in which it occurs) with a specified
identifier.

Though many references provide insights into how
these operations can be implemented, none presents a
formal definition (other than implementations) of ex
actly what they mean. The abstract concept "symbol
table" thus goes undefined. Those who attempt to write
compilers in a top-down fashion suffer from a similar
problem. Early refinements of parts of the compiler
make use of the basic symbol table operations, but the
"meaning" of these operations is provided only by
subsequent levels of refinement. This is infelicitous in
that the clear separation of levels of abstraction is lost
and with it many of the advantages of top-down design.
By providing axiomatic semantics for the operations,
this problem can be avoided.

The thought of providing rigorous definitions for so
many operations may, at first, seem a bit intimidating.
Nevertheless, if one is to understand the refinement,
one must know what each operation means. The fol
lowing specification of abstract type Symboltable sup
plies these meanings.

Type: Symboltable

Operations:
INIT:
ENTERBLOCK:
LEA VEBLOCK:
ADD:

IS-INBLOCK? :
RETRIEVE:

~ Symboltable
Symboltable ~ Symboltable
Symboltable ~ Symboltable
Symboltable x Identifier x Attributelist ~

Symbol table
Symboltable x Identifier ~ Boolean
Symboltable x Identifier ~ Attributelist

www.manaraa.com

401

Axioms:
(1) LEA VEBLOCK(INIT) = error
(2) LEA VEBLOCK(ENTERBLOCK(syrntab)) = syrntab
(3) LEA VEBLOCK(ADD(syrntab, id, attrs» = LEA VE-

BLOCK(syrntab)
(4) IS-.lNBLOCK? (INIT, id) = false
(5) IS-.lNBLOCK? (ENTERBLOCK(syrntab), id) = false
(6) IS-.lNBLOCK? (ADD(symtab, id, attrs), idl) =

if IS_SAME? (id, idl)2
then true
else IS-.lNBLOCK? (symtab, id)

(7) RETRIEVE(INIT, id) = error

(8) RETRIEVE(ENTERBLOCK(symtab), id) =
RETRIEVE(symtab, id)

(9) RETRIEVE(ADD(symtab, id, attrs), idl)=
if IS_SAME? (id, idl)

then attrs
else RETRIEVE(symtab, idl)

This set of relations serves a dual purpose. Not only
does it define an abstract type that can be used in the
specification of various parts of the compiler, but it also
provides a complete self-contained specification for a
major subsystem of the compiler. If one wished to
delegate the design and implementation of the symbol
table subsystem, the algebraic characterization of the
abstract type would (unlike the informal description in,
say, McKeeman [15]) be a sufficient specification of
the problem. In fact, the procedure discussed earlier
can be used to formally prove the sufficient-complete
ness of this specification.

The next step in the design process is to further
refine type Symboltable, i.e. to provide implementa-

2 The definition of IS_SAME? is part of the specification of an
independently defined type Identifier.

www.manaraa.com

402

tions of the operations of the type. These implementa
tions will implicitly furnish representation for values of
type Symboltable.

A representation of a type T consists of (i) any
interpretation (implementation) of the operations of
the type that is a model for the axioms of the specifica
tion of T, and (ii) a function <I> that maps terms in the
model domain onto their representatives in the abstract
domain. (This is basically the abstraction function of
Hoare [12].)

It is important to note that <I> may not have a proper
inverse. Consider, for example, type Bounded Queue
(with a maximum length of three). A reasonable repre
sentation of the values of this type might be based on a
ring-buffer and top pointer. Given this representation,
the program segment:

x:= EMPTY.Q
x := ADD.Q(x, A)
x := ADD.Q(x, B)
x := ADD.Q(x, C)
x := REMOVE.Q(x)
x := ADD.Q(x, D)

would translate to a representation for x of the form:

Similarly:

x:= EMPTY.Q
x := ADD.Q(x, B)

Top Pointer

www.manaraa.com

x := ADD.Q(x, C)
X := ADD.Q(x, D)

403

would yield a representation for x of the form:

Top Pointer

It is clear that these two representations though not
identical, refer to the same abstract value. That is to
say, the mapping from values to representations, <1>-1,
may be one-to-many.

The representation of type Symboltable will make
use of the abstract data types Stack (of arrays) and
Array (of attribute lists) as defined below.

Type: Stack

Operations:

NEWSTACK:
PUSH:
POP:
TOP:
IS...NEWSTACK?:
REPLACE:

Axioms:

-Stack
Stack x Array - Stack
Stack - Stack
Stack - Array
Stack - Boolean
Stack x Array - Stack

(10) ISjlEWSTACK? (NEWSTACK) = true
(11) ISjlEWSTACK? (PUSH(stk, arr» = false
(12) POP(NEWSTACK) = error
(13) POP(PUSH(stk, arr» = stk
(14) TOP(NEWSTACK) = error
(15) TOP(PUSH(stk, arr» = arr
(16) REPLACE(stk, arr) = if IS.-NEWSTACK? (stk)

then error
else PUSH(POP(stk), arr)

www.manaraa.com

404

Type: Array

Operations:

EMPTY: ~ Array
ASSIGN:
READ:

Array x Identifier x Attributelist - Array
Array x Identifier - Attributelist

IS_UNDEFINED?: Array x Identifier - Boolean

Axioms:

(17) IS_UNDEFINED? (EMPTY, id) = true
(18) IS_UNDEFINED? (ASSIGN(arr, id, attrs), idl) =

if IS-.SAME? (id, idl)
then false
else IS_UNDEFINED? (arr, idl)

(19) READ(EMPTY, id) = error
(20) READ(ASSIGN(arr, id, attrs), idl) = if IS-.SAME? (id, idl)

then attrs
else READ(arr, idl)

The general scheme of the representation of type
Symboltable is to treat a value of the type as a stack of
arrays (with index type Identifier), where each array
contains the attributes for the identifiers declared in a
single block. For every function! in the more abstract
domain (e.g. type Symboltable), a function!' is defined
in the lower-level domain; thus we have:

INIT': - Stack
ENTERBLOCK': Stack - Stack
LEA VEBLOCK': Stack - Stack
ADD': Stack x Identifier x Attributelist ~ Stack
ISJNBLOCK?': Stack x Identifier ~ Boolean
RETRIEVE': Stack x Identifier ~ Attributelist

The "code" for each of these functions is ("::" means
"is defined as"):

INIT' :: PUSH(NEWSTACK, EMPTY)
ENTERBLOCK'(stk) :: PUSH(stk, EMPTY)
LEAVEBLOCK'(stk):: if IS~EWSTACK? (POP(stk»

www.manaraa.com

405

then error
else PO P(stk)

ADD'(stk, id, attrs) :: REPLACE(stk, ASSIGN(TOP(stk), id,
attrs»

ISJNBLOCK?'(stk, id):: if IS~EWSTACK? (stk)
then false
else -, IS_UNDEFINED? (TOP(stk),

id)
RETRIEVE'(stk, id):: if IS~EWSTACK? (stk)

then error
else -, IS_UNDEFINED? (TOP(stk), id)

then RETRIEVE'(POP(stk), id)
else READ(TOP(stk), id)

The interpretation function <I> is defined by:
(a) 4>(error) = error
(b) 4>(NEWSTACK) = error
(e) 4>(PUSH(stk, EMPTY» = if IS~EWSTACK? (stk)

then INIT
else ENTERBLOCK(CI>(stk»

(d) 4>(PUSH(stk, ASSIGN(arr, id, attrs») = ADD{CI>PUSH(stk,
arr», id, attrs»

Before continuing to refine these operations, i.e.
before supplying representations for types Array and
Stack, let us consider the problem of proving that the
above implementation of type Symboltable is correct.

In the course of such a proof two kinds of invariants
may have to be verified: inherent invariants and repre
sentation invariants. The inherent invariants represent
those invariant relationships that must be maintained
by any representation of the type. They correspond to
the axioms used in the specification of the type .. A
representation invariant, on the other hand, is peculiar
to a particular representation of a type.

The basic procedure followed in verifying the inher
ent invariants is to take each axiom for type Symbolta
ble and replace all instances of each function appearing

www.manaraa.com

406

in the axiomatization with its interpretation. Then, by
using the axiomatizations of the operations used in
constructing the representations, it is shown that the
left-hand side of each axiom is equivalent to the right
hand side of that axiom. That is to say, they represent
the same abstract value.

What must be shown therefore is that for every
relationf'(x*) = z (wherex* is a list, possibly empty, of
arguments), derived from the axiomatization of type
Symboltable,
(a) if the range of f is the type being defined (i.e.,

Symboltable), Cl>lf'(x*» = 4>(z) for all legal assign
ments to the free variables of x * and z, or

(b) if the range of f is a type other than that being
defined, f' (x *) = z for all legal assignments to the
free variables of x * and z.

To show this, we have at our disposal a proof system
consisting of the axioms and rules of inference of our
programming language plus the axioms defining the
abstract types used in the representation.

The proof depends upon the assumption that ob
jects of type Symboltable are created and manipulated
only via the operations defined in the specification of
that type. (The use of classes as described in Palme [18]
makes this assumption relatively easy to verify.) All
that need be shown is that INIT' establishes the invar
iants and that if on entry to an operation all invariants
hold for all objects of type Symboltable to be manipu
lated by that operation, then all invariants on those
objects hold upon completion of that operation. More
complete discussions of how this may be done are
contained in Guttag [8], Spitzen [21], and Wegbreit
[23] (where it is called generator induction).

www.manaraa.com

407

To verify that the implementation is consistent with
Axioms 1 through 8 is quite straightforward. (It has, in
fact, been done completely mechanically by David
Musser [17] using the program verification system at
the University of Southern California Information Sci
ences Institute [7]. Thus the proofs will not be pre
sented here. Axiom 9, on the other hand, presents
some problems that make the portion of the proof
pertinent to that axiom worth examining.

The proof that the implementation satisfies Axiom
9 is based upon an assumption about the environment
in which the operations of the type are to be used. In
effect, the assumption asserts that an identifier is never
added to an empty symbol table, i.e. a scope must have
been established (on a more concrete level, an array
must have been pushed onto the stack) before an iden
tifier can be added. The concrete manifestation of this
assumption is formally expressed:

Assumption 1. For any term, ADD'(symtab, id,
attrs), IS-.NEWSTACK? (symtab) = false.

The validity of the above assumption can be assured
by adding to the implementation of ADD' a check for
this condition and having it execute an ENTER
BLOCK' if necessary. This would make it possible to
construct a completely self-contained proof of the cor
rectness of the representation. In most cases, however,
it would also introduce needless inefficiency. The com
piler must somewhere check for mismatched (i.e. ex
tra) "end" statements. Any check in ADD' would
therefore be redundant.

This observation leads to a notion of conditional
correctness, i.e. the representation of the abstract type
is correct if the enclosing program obeys certain con
straints. In practice, this is often an extremely useful

www.manaraa.com

408

notion of correctness, especially if the constraint is
easily checked. If, on the other hand, the environment
in which the abstract type is to be used is unknown (e.g.
if the type is to be included in a·library), this is probably
unacceptably dangerous. Given the above assumption,
the verification of Axiom 9 is straightforward but
lengthy and will therefore not be presented here. It
does appear in Guttag [8].

Now we know that, given implementations of types
Stack and Array that are consistent with their specifica
tions, the implementation of type Symboltable is "cor
rect. H Assuming PL/I-like based variables, pointers,
and structures, the implementation of type Stack is
trivial. The basic scheme is to represent a stack as a
pointer to a list of structures of the form:

1. stack elem based,
2. val Array,
2. prev pointer.

The operations may be implemented as follows (PL/I
keywords have been boldfaced):

NEWSTACK' :: null
PUSH'(symtab, newblock) ::

procedure(symtab: pointer, newblock: Array)retums(pointer)
de dare elem_ptr pointer
allocate (stack-elem) set(elem_ptr)
eleID-ptr ~ prev := symtab
elem-ptr ~ val := newblock
retum(elem_ptr)

end
POP'(symtab) ::

procedure(sym tab: pointer) returns(pointer)
if symtab = null

then retum(error)
else retum(symtab --. prey)

end

www.manaraa.com

409

TOP'(symtab) ::
procedure(symtab: pointer) returns(Array)

if symtab = nuD
then return(error)
else return(symtab -+ val)

end

IS....NEWSTACK?'(symtab) :: symtab = null

REPLACE'(symtab. newblock) ::
procedure(symtab: pointer, newblock: Array) retums(pointer)

if symtab = nuD

end

then return(error)
else symtab -+ val := newblock

return(symtab)

<I> is defined by the mapping:

<I>(symtab) :: if symtab = null
then NEWSTACK
else PUSH(<I>(symtab -+ prev), symtab -+ val»

The implementation chosen for type Array is a bit
more complicated. The basic scheme is to represent an
array as a PL/l-like array, hash_tab, of n pointers to
lists of structures of the form:

1. entry based,
2. id Identifier
2. attributes Anrlbutelist,
2. next pointer.

The correct element of haslLtab is selected by perform
ing a hash on values of type Identifier. Therefore, in
addition to the operations used in the code above, the
implementation of type Array uses an operation

HASH:Identifier -+ {1, 2, ... , n}

which is assumed to be defined in the type Identifier
specification. The "code" implementing type Array is:

www.manaraa.com

410

declare hash_tab(n) pointer based

EMPTY' ::
procedure returns(pointer)

declare newj}aslL.tab pointer
allocate (hash_tab) set (new -IlaslL.tab)
do i := 1 to n

newj}ash_tab - haslL.tab(i) := null
end
retum(newj}ash_tab)

end

ASSIGN'(arr, indx, atr) ::
procedure(arr: pointer, indx: Identifier, atr: Attributelist)

returns(pointer)
declare new_entry pointer
alIocate(entry) set (new_entry)

new_entry - id := indx
new_entry - attributes := atr
new_entry - next := arr - haslL.tab(HASH(indx))
arr - hash_tab(HASH(indx)) := new_entry

retum(arr)
end

READ'(arr, indx) ::
procedure(arr: pointer, indx: Identifier) retums(Attributelist)

declare buckeLptr pointer
buckeLptr := arr - haslL.tab(HASH(indx))

do while{buckeLptr * nuD & -, IS_SAME?(buckeLptr - id,
indx»

buckeLptr := buckeLptr - next
end
if buckeLptr = null

then retum(error)
else retum (buckeLptr - attributes)

end

IS_UNDEFINED?'(arr, indx) ::
procedure(arr: pointer, indx: Identifier) retums(Boolean)

declare buckeLptr pointer
buckeLptr := arr - haslL.tab(HASH(indx»

do while (buckeLptr =F null & -, IS-SAME? (buckeLptr - id,
indx»

www.manaraa.com

411

buckeLptr := arr -+ hash_tab(HASH(indx»
do while (buckeLptr =1= null & -, IS_SAME? (buckeLptr -+ id,

indx»
buckeLptr := buckeLptr -+ next

end
return (buckeLptr = null)

end

As one might expect, <1> is a bit more complex for
this representation. It is defined by using two interme
diate functions: <1>1 to construct a union over all the
entries in the hash table, and <1>2 to construct a union
over the elements of an individual bucket.
(a) <I> (haslLtab_ptr) = <I> 1 (hash_tab_ptr, EMPTY, 1)
(b) <l>l(haslLtab-ptr, arr, i) =

if i > n
then arr
else <I> 1 (haslLtab_ptr, <I> 2 (hash_tab_ptr -+ haslLtab(i), arr).

i + I.)
(c) <l>2(buckeLptr,arr) =

if buckeLptr = null
then arr
else ASSIGN(<I>2(buckeLptr-+ next, arr), buckeLptr-+ id,

buckel-Ptr -+ attributes)

The design of the symbol table subsystem of the
compiler is now essentially complete. Given implemen
tations of types Identifier and Attributelist and some
obvious syntactic transformations, the above code
could be compiled by a PL/I compiler. Before doing so,
however, it would be wise to prove that the implemen
tations of types Stack and Array are consistent with the
specifications of those types. While such a proof would
involve substantial issues related to the general pro
gram verification problem (e.g. vis a vis the integrity of
the pointers and the question of modifying shared data
structures), it would not shed further light on the role

www.manaraa.com

412

of abstract data types in program verification and is not
presented in these pages.

The ease with which algebraic specifications can be
adapted for different applications is one of the major
strengths of the technique. Because the relationships
among the various operations appear explicitly, the
process of deciding which axioms must be altered to
effect a change is straightforward. Let us consider a
rather substantial change in the language to be com
piled. Assume that the language permits the inherit
ance of global variables only if they appear in a "knows
list," which lists, at block entry, all nonlocal variables
to be used within the block [6]. The symbol table
operations in a compiler for such a language would be
much like those already discussed. The only difference
visible to parts of the compiler other than the symbol
table module would be in the ENTERBLOCK opera
tion: It would have to be altered to include an argument
of abstract type Knowlist. Within the specification of
type Symboltable, all relations, and only those rela
tions, that explicitly deal with the ENTERBLOCK
operation would have to be altered. An appropriate set
of axioms would be:

ISJNBLOCK?(ENTERBLOCK(symtab, klist), id) = false
LEA VEBLOCK(ENTERBLOCK(symtab, klist» = symtab
RETRIEVE(ENTERBLOCK(symtab, klist), id) =

if ISJN?(klist, id)
then RETRIEVE(symtab, id)
else error

Note that the above relations are not well defined.
The undefined symbol IS-IN?, an operation of the
abstract type Knowlist, appears in the third axiom. The
solution to this problem is simply to add another level

www.manaraa.com

413

to the specification by supplying an algebraic specifica
tion of the abstract type Knowlist. An appropriate set
of operations might be:

CREATE: -+ Knowlist
APPEND: Knowlist x Identifier -+ Knowlist
ISJN?: Knowlist x Identifier -+ Boolean

These operations could then be precisely defined by the
following axioms:

ISJN?(CREATE) = false
ISJN?(APPEND(klist, id), idl) = if IS_SAME?(id, idl)

then true
else IS..JN?(klist, idl)

The implementation of abstract type Knowlist is
trivial. The changes necessary to adapt t~e previously
presented implementation of abstract type Symboltable
would be more substantial. The kind of changes neces
sary can, however, be inferred from the changes made
to the axiomatization.

5. Conclusions

We have not yet applied the techniques discussed in
this paper to realistically large software projects.
Nevertheless, there is reason to believe that the tech
niques demonstrated will "scale up." The size and
complexity of a specification at any level of abstraction
are essentially independent of both the size and com
plexity of the system being described and of the amount
of mechanism ultimately used in the implementation.
The independence springs in large measure from the
ability to separate the precise meaning of a complex

www.manaraa.com

414

abstract data type from the details involved in its imple
mentation. It is the ability to be precise without being
detailed that encourages the belief that the approach
outlined here can be applied even to "very large"
systems can and perhaps reduce systems that were
formerly "very large" (i.e. incomprehensible) to more
manageable proportions.

Abstract types may thus play a vital role in the
formulation and presentation of precise specifications
for software. Many complex systems can be viewed as
instances of an abstract type. A database manageII)ent
system, for example, might be completely character
ized by an algebraic specification of the various opera
tions available to users. For those systems that are not
easily totally characterized in terms of algebraic rela
tions, the use of algebraic type specifications to abstract
various complex subsystems may still make a substan
tial contribution to the design process. The process of
functional decomposition requires some means for
specifying the communication among the various func
tions - data often fulfills this need. The use of algebraic
specifications to provide abstract definitions of the op
erations used to establish communication among the
various functions may thus play a significant role in
simplifying the process of functional abstraction.

The extensive use of algebraic speCifications-of ab
stract types may also lead to better-designed data struc
tures. The premature choice of a storage structure and
set of access routines is a common cause of inefficien
cies in software. Because they serve as the main means
of communication among the various components of
many systems, the data structures are often the first
components designed. Unfortunately, the information
required to make an intelligent choice among the var-

www.manaraa.com

415

ious options is often not available at this stage of the
design process. The designer may, for example, have
poor insight into the relative frequency of the various
operations to be performed on a data structure. By
providing a representation-free, yet precise, descrip
tion of the operations on a data structure, algebraic
type definitions enable the designer to delay the mo
ment at which a storage structure must be designed and
frozen.

The second area in which we expect the algebraic
specification of abstract types to have a substantial
impact is on proofs of program properties. For verifica
tions of programs that use abstract types, the algebraic
specification of the types used provides a set of power
ful rules of inference that can be used to demonstrate
the consistency of the program and its specification.
That is to say, the presence of axiomatic definitions of
the abstract types provides a mechanism for proving a
program to be consistent with its specifications, pro
vided that the implementations of the abstract opera
tions that it uses are consistent with their specifications.
Thus a technique for factoring the proof is provided,
for the algebraic type definitions serve as the specifica
tion of intent at a lower level of abstraction. For proofs
of the correctness of representations of abstract types,
the algebraic specification provides exactly those asser
tions that must be verified. The value of having such a
set of assertions available should be apparent to any
one who has attempted to construct, a posteriori, asser
tions appropriate to a correctness proof for a program.
A detailed discussion of the use of algebraic specifica
tions in a semiautomatic program verification system is
contained in Guttag [10].

www.manaraa.com

416

a single value. Most programs, on the other hand, are
laden with procedures that return several values (via
parameters) or no value at all. (The latter kind of
procedure is invoked purely for its side effects.) The
inability to specify such procedures is a serious prob
lem, but one that we believe can be solved with only
minor changes to the specification techniques [10].

The value of abstraction in general and abstraction
of data types in particular has been stressed throughout
this paper. Nevertheless, the process is not without its
dangers. It is all too easy to create abstractions that
ignore crucial distinctions or attributes. The specifica
tion technique presented here, for example, provides
no mechanism for specifying performance constraints
and thus encourages one to ignore distinctions based on
such criteria. In some environments, such considera
tions are crucial, and to abstract them out can be
disastrous.

Another problem with algebraic specifications is
that they supply little direction to implementors. Only
experience will tell how easy it is to go from an alge
braic specification to an implementation. It is clear,
however, that the transition is less easy than from an
operational specification.

Our most important reservation pertains to the ease
with which algebraic specifications can be constructed
and read. They should present no problem to those
with formal training in computer science. At present,
however, most people involved in the production of
software have no such training. The extent to which the
techniques described in this paper are generally appli
cable is thus somewhat open to conjecture.

www.manaraa.com

417

Acknowledgment. The author is greatly indebted to
J.J. Horning of the University of Toronto, who, as the
author's thesis supervisor, provided three years of good
advice.

References
1. Batey, M., Ed. Working Draft of ECMA/ANSI PL/I Standard
Tenth Rev., ANSI, New York, (Sept. 1973).
2. Birkhoff, G., and Lipson, J.D. Heterogeneous algebras. J.
Combinatorial Theory 8 (1970), 115-133.
3. Dahl, O.-J., Nygaard, K., and Myhrhaug, B. The SIMULA 67
Common Base Language. Norwegian Comptng. Centre, Oslo, 1968.
4. Dijkstra, E.W. Notes on structured programming. In Structured
Programming, Academic Press, New York, 1972.
S. Floyd, R.W. Assigning Meaning to Programs. Proc. Symp. in
Applied Math., Vol. XIX, AMS, Providence, R.I., 1967, pp. 19-32.
6. Gannon, J.D. Language design to enhance programming
reliability. Ph.D. Th., Comptr. Syst. Res. Group Tech. Rep. CSRG-
47, Dept. Comptr. Sci., U. of Toronto, Ontario, 1975.
7. Good, D.I., London, R.L., and Bledsoe, W.W. An interactive
program verification system. IEEE Trans. on Software Engineering
SE-J, 1 (March 1975),59-67.
8. Guttag, J. V. The specification and application to programming
of abstract data types. Ph.D. Th., Comptr. Syst. Res. Group Tech.
Rep. CSRG-59, Dept. Comptr. Sci. 1975, U. of Toronto, Ontario,
1975.
9. Guttag, J.V. and Homing, J.J., The algebraic specifications of
abstract data types. Acta Informatica (to appear).
10. Guttag, J.V., Horowitz, E., and Musser, D.R. Abstract data
types and software validation. Tech. Rep., Inform. Sci. Inst., U. of
Southern California, Los Angeles, 1976.
11. Guttag, J.V., Horowitz, E., and Musser, D.R. The design of
data type specifications. Proc. Second Int. Conf. on Software Eng.,
San Francisco, Oct. 1976, pp. 414-420.
12. Hoare, C.A.R., Proof of correctness of data representations.
Acta Informatica J (1972), 271-281.
13. Hoare, C.A.R., and Wirth, N. An axiomatic definition of the
programming language PASCAL. Acta Informatica 2 (1973),335-
355.
14. Liskov, B.H., and Zilles, S.N. Programming with abstract data
types. Proc. ACM SIGPLAN Symp. on Very High Level Languages,
SIGPLAN Notices (ACM) 9, 4 (April 1974),50-59.

www.manaraa.com

418

15. McKeeman, W.M., Symbol Table Access. In Compiler
Construction, An Advanced Course, T.L. Bauer, and J. Eichel, Eds.,
Springer-Verlag, New York, 1974.
16. Morris, J .H. Types are not sets. Conf. Rec. ACM Symp. on the
Principles of Programming Languages, Boston, Mass., Oct. 1973,
pp. 120-124.
17. Musser, D. Private communication, 1975.
18. Palme, J. Protected program modules in SIMULA 67. FOAP
Rep. C8372-M3(E5), Res. Inst. of National Defense, Stockholm,
1973.
19. Parnas, D.L. A technique for the specification of software
modules with examples. Comm. ACM 15, 5 (May 1973),330-336.
20. Parnas, D.L. Information distribution aspects of design
methodology. Information Processing 71, North Holland Pub. Co.,
Amsterdam, 1971, pp. 339-3~4.
21. Spitzen, J., and Wegbreit, B. The verification and synthesis of
data structures. Acta Informatica 4 (1975), 127-144.
22. Standish, T.A. Data structures: An axiomatic approach. BBN
Rep. No. 2639, Bolt, Beranek and Newman, Cambridge. Mass.,
(1973).
23. Wegbreit, B., and Spitzen, J. Proving properties of complex data
structures. J. ACM 23, 2 (April 1976), 389-396.
24. Wulf, W.A., London, R.L., and Shaw, M. Abstraction and
verification in Alphard: Introduction to language and methodology.
USC Inform. Sci. Tech. Rep., U. of Southern California. Los
Angeles, 1976.
25. Zilles, S.N. Abstract specifications for data types. IBM Res.
Lab., San Jose, Calif., 1975.

www.manaraa.com

C.A.R. Hoare

An Axiomatic Basis for Computer Programming

Communications of the ACM, Vol. 12 (10), 1969
pp. 576-580, 583

www.manaraa.com

An Axiomatic Basis for
Computer Programming

C. A. R. HOARE

The Queen' s University of Belfast, * Northern Ireland

In this paper an attempt is made to explore the logical founda
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac
tical, may follow from a pursuance of these topics.

KEY WORDS AND PHRASES: axiomatic method, theory of programming'
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation
CR CATEGORY: 4.0,4.21,4.22,5.20,5.21,5.23,5.24

1. Introduction

Computer programming is an exact science in that all
the properties of a program and all the consequences of
executing it in any given environment can, in principle,
be found out from the text of the program itself by means
of purely deductive reasoning. Deductive reasoning in
volves the application of valid rules of inference to sets of
valid axioms. It is therefore desirable and interesting to

• Department of Computer Science

www.manaraa.com

422

elucidate the axioms and rules of inference which underlie
our reasoning about computer programs. The exact choice
of axioms will to some extent depend on the choice of
programming language. For illustrative purposes, this
paper is confined to a very simple language, which is effec
tively a subset of all current procedure-oriented languages.

2. Computer Arithmetic

The first requirement in valid reasoning about a pro
gram is to know the properties of the elementary operations
which it invokes, for example, addition and multiplication
of integers. Unfortunately, in several respects computer
arithmetic is not the same as the arithmetic familiar to
mathematicians, and it is necessary to exercise some care
in selecting an appropriate set of axioms. For example, the
axioms displayed in Table I are rather a small selection
of axioms relevant to integers. From this incomplete set
of axioms it is possible to deduce such simple theorems as:

x=x+yXO

y <; r ::) r + y X q = (1' - y) + y X (1 + q)

The proof of the second of these is:

A5 (1' - y) + y X (1 + q)

- (1' - y) + (y X 1 + y X q)

A9 - (1' - y) + (y + y X q)

A3 - «1' - y) + y) + y X q

A6 = l' + y X q provided y -< r

The a....uoms A.l to A9 are, of course, true of the tradi
tional infinite set of integers in mathematics. However,
they are also true of the finite sets of "integers" which are
manipulated by computers provided that they are con-

www.manaraa.com

423

TABLE I

Al x+y=y+x addition is commutative
A2 xXy=yXx multiplication is commut-

ative
A3 (x + y) + z = x + (y + z) addition is associative
A4: (x X y) X z = x X (y X z) multiplication is- associa-

tive
A5 x X (y + z) = x X y + x X z multiplication distrib-

utes through addition
A6 y < x :::> (x - y) + y = x addition cancels subtrac-

tion
A7 x+O=x
A8 xXO=O
A9 xXl=x

TABLE II

1. Strict Interpretation

+ 0 1 2 3 X 0 1 2 3

0 0 1 2 3 0 0 0 0 0
1 1 2 3 * 1 0 1 2 3
2 2 3 * * 2 0 2 * *
3 3 * * * 3 0 3 * *
* nonexistent

2. Firm Boundary

+ 0 1 2 3 X 0 1 2 3

0 0 1 2 3 0 0 0 0 0
1 1 2 3 3 1 0 1 2 3
2 2 3 3 3 2 0 2 3 3
3 3 3 3 3 3 0 3 3 3

3. Modulo Arithmetic

+ 0 1 2 3 X 0 1 2 3

0 0 1 2 3 0 0 0 0 0
1 1 2 3 0 1 0 1 2 3
2 2 3 0 1 2 0 2 0 2
3 3 0 1 2 3 0 3 2 1

www.manaraa.com

424

fined to nonnegative numbers. Their truth is independent
of the size of the set; furthermore, it is largely independent
of the choice of technique applied in the event of "over
flow"; for example:

(1) Strict interpretation: the result of an overflowing
operation does not exist; when overflow occurs, the offend
ing program never completes its operation. Note that in
this case, the equalities of Al to A9 are strict, in the sense
that both sides exist or fail to exist together.

(2) Firm boundary: the result of an overflowing opera
tion is taken as the maximum value represented.

(3) Modulo arithmetic: the result of an overflowing
operation is computed modulo the size of the set of integers
represented.

These three techniques are illustrated in Table II by
addition and multiplication tables for a trivially small
model in which 0, 1, 2, and 3 are the only integers repre
sented.

It is interesting to note that. the different systems satisfy
ing axioms Al to A9 may be rigorously distinguished from
each other by choosing a particular one of a set of mutually
exclusive supplementary axioms. For example, infinite
arithmetic satisfies the axiom:

AI01 ..,3xV'y (y < x),

where all finite arithmetics satisfy:

AIOp' V'x (x < max)

where "max" denotes the largest integer represented.
Similarly, the three treatments of overflow may be

distinguished by a choice of one of the following axioms
relating to the value of max + 1:

AIls .., 3x (x = max + 1)

AIIB max + 1 = max

(strict interpretation)

(firm boundary)

www.manaraa.com

425

AIIJ{ max + 1 = 0 (modulo arithmetic)

Having selected one of these axioms, it is possible to
use it in deducing the properties of programs; however,
these properties will not necessarily obtain, unless the
program is executed on an implementation which satisfies
the chosen axiom.

3. Program Execution

As mentioned above, the purpose of this study is to
provide a logical basis for proofs of the properties of a
program. One of the most important properties of a pro
gram is whether or not it carries out its intended function.
The intended function of a program, or part of a program,
can be specified by making general assertions about the
values which the relevant variables will take after execution
of the program. These assertions will usually not ascribe
particular values to each variable, but will rather specify
certain general properties of the values and the relation
ships holding between them. We use the normal notations
of nlathematicallogic to express these assertions, and the
familiar rules of operator precedence have been used
whereyer possible to improve legibility.

In many cases, the validity of the results of a program
(or part of a program) will depend on the values taken
by the variables before that program is initiated. These
initial preconditions of successful use can be specified by
the same type of general assertion as is used to describe
the results obtained on termination. To state the required
connection between a precondition (P), a program (Q)
and a description of the result of its execution (R), we
introduce a new notation:

P {Q} R.

This may be interpreted "If the assertion P is true before
initiation of a program Q, then the assertion R will be

www.manaraa.com

426

true on its completion." If there are no preconditions im
posed, we write true {Q} R.l

The treatment given below is essentially due to Floyd
[8] but is applied to texts rather than flowcharts.

3.1. AxIOM OF AsSIGNMENT

Assignment is undoubtedly the most characteristic fea
ture of programming a digital computer, and one that
most clearly distinguishes it from other branches of mathe
matics. It is surprising therefore that the axiom governing
our reasoning about assignment is quite as simple as any
to be found in elementary logic.

Consider the assignment statement:

x:= f
where

x is an identifier for a simple variable;
f is an expression of a programming language without

side effects, but possibly containing x.
Now any assertion P (x) which is to be true of (the value

of) x after the assignment is made must also have been
true of (the value of) the expression f, taken before the
assignment is made, i.e. with the old value of x. Thus
if P (x) is to be true after the assignment, then P (j) must
be true before the assignment. This fact may be expressed
more formally:

DO Axiom of Assignment
rPo {x := f} P

where
x is a variable identifier;
f is an expression;
Po is obtained from P by substituting f for all occur

rences of x.

1 If this can be proved in our formal system, we use the familiar
logical symbol for theoremhood: rP {Q} R

www.manaraa.com

427

It may be noticed that DO is not really an axiom at all,
but rather an axiom schema, describing an infinite set of
axioms which share a common pattern. This pattern is
described in purely syntactic terms, and it is easy to
check whether any finite text conforms to the pattern,
thereby qualifying as an axiom, which may validly appear
in any line of a proof.

3.2. RULES OF CONSEQ"CEXCE

In addition to axioms, a deductive science requires at
least one rule of inference, which permits the deduction of
new theorems from one or more axioms or theorems al
ready proved. A rule of inference takes the form "If r- X
and r- Y then r- Z", i.e. if assertions of the form X and Y
have been proved as theorems, then Z also is thereby
proved as a theorem. The simplest example of an inference
rule states that if the execution of a program Q en
sures the truth of the assertion R, then it also ensures the
truth of every assertion logically implied by R. Also, if
P is knmvn to be a precondition for a program Q to pro
duce result R, then so is any other assertion which logically
implies P. These rules may be expressed more formally:

DI Rules of Consequence
If r- P { Q}R and r- R ::J S then r- P { Q }S
If r- P { Q} Rand r- S ::J P then r- S { Q} R

3.3. RULE OF COMPOSITIOX

A program generally con.sists of a sequence of statements
which are executed one after another. The statements may
be separated by a semicolon or equivalent symbol denoting
procedural composition: (Ql; Q2; ... ; Qn). In order to
avoid the awkwardness of dots, it is possible to deal ini
tially 'with only two statements (Ql; Q2), since longer se
quences can be reconstructed by nesting, thus (Ql; (Q2;
(... (Qn-l ; Qn) ... »). The removal of the brackets of

www.manaraa.com

428

this nest may be regarded as convention based on the
associativity of the" ;-operator", in the same way as brack
ets are removed from an arithmetic expression (tl + (~ +
(. .. (tn- 1 + tn) • • •))).

The inference rule associated with composition states
that if the proven result of the first part of a program is
identical with the precondition under which the second part
of the program produces its intended result, then the whole
program will produce the intended result, provided that the
precondition of the first part is satisfied.

In more formal terms:

D2 Rule of Composition

If rP{QdR1 and rRdQdR then r P{ (QI; Q2)}R

3.4. RULE OF ITER..-\TIOX

The essential feature of a stored program computer is
the ability to execute some portion of program (8) re
peatedly until a condition (B) goes false. A simple way of
expressing such an iteration is to adapt the .ALGOL 60
while notation:

while B do S

In executing this statement, a computer first tests the con
dition B. If this is false, S is omitted, and execution of the
loop is complete. Otherwise, S is executed and B is tested
again. This action is repeated until B is found to be false.
The reasoning which leads to a formulation of an inference
rule for iteration is as follows. Suppose P to be an assertion
which is always true on completion of S, provided that it is
also true on initiation. Then obviously P will still be true
after any number of iterations of the statement S (even
no iterations). Furthermore, it is known that the con
trolling condition B is false when the iteration finally
terminates. A slightly more powerful formulation is pos
sible in light of the fact that B may be assumed to be true
on initiation of S:

www.manaraa.com

429

D3 Rule of Iteration
If f-P 1\ B{S}P then f-P{while B do S}..,B 1\ P

3.5. EXA.:l-IPLE

The axioms quoted above are sufficient to construct the
proof of properties of simple programs, for example, a
routine intended to find the quotient q and remainder r
obtained on dividing x by y. All variables are assumed to
range over a set of nonnegative integers conforming to the
axioms listed in Table I. For simplicity we use the trivial
but inefficient method of successive subtraction. The pro
posed program is:

((r : = x; q: = 0); while
y -< r do (r := r - y; q:= 1 + q))

An important property of this program is that when it
terminates, we can recover the numerator x by adding to
the remainder r the product of the divisor y and the quo
tient q (i.e. x = r + y X q). Furthermore, the remainder
is less than the divisor. These properties may be expressed
formally:

true {Q} .., y -< r 1\ x = r + y X q

where Q stands for the program displayed above. This
expresses a necessary (but not sufficient) condition for
the "correctness" of the program.

A formal proof of this theorem is given in Table III.
Like all formal proofs, it is excessively tedious, and it
would be fairly easy to introduce notational conventions
which would significantly shorten it. An even more power
ful method of reducing the tedium of formal proofs is to
derive general rules for proof construction out of the simple
rules accepted as postulates. These general rules would be
shown to be valid by demonstrating how every theorem
proved with their assistance could equally well (if more
tediously) have been proved without. Once a powerful set

www.manaraa.com

430

TABLE III

Line
number Formal proof

1 true :::> x = x + y X 0

2 x = x + y X O{r := x}x = r + y X 0

3 x = T + y X 0 {q := O} x = r + y X q

4 true {T : = x} x = T + y X 0
5 true {r : = xi q: = O} x = r + y X q

6 x=r+yXq;\y,r:::>x=
(r-y) + y X (l+q)

7 x = (r-y) + y X (1+q){r := r-y}x =

r + y X (l+q)
8 x = T + y X (l+q) {q := l+q}x =

r+yXq
9 x = (r-y) + y X (1+q) {r := r-Yi

10

q := l+q} x = r + y X q
x = r + y X q ;\ y , r {r := r-Yi

q := l+q} x = r + y X q
11 x = T + Y X q {while y,r do

(T := r-y; q:= l+q)}
-,y , r ;\ x = r + y X q

12 true {«r := Xj q:= 0) j while y , r do

(r := r-y; q:= l+q»} ..,y < r ;\ x =

Justification

Lemma 1
DO
DO

Dl (1, 2)

D2 (4, 3)

Lemma 2

DO

DO

D2 (7, 8)

Dl (6,9)

D3 (10)

r + y X q D2 (5, 11)

NOTES

1. The left hand column is used to number the lines, and the
right hand column to justify each line, by appealing to an a.~iom,
a lemma or a rule of inference applied to one or two previous
lines, indicated in brackets. Neither of these columns is part
of the formal proof. For example, line 2 is an instance of the
axiom of assignment (DO); line 12 is obtained from lines 5 and 11
by application of the rule of composition (D2).

2. Lemma 1 may be proved from axioms A7 and A8.
3. Lemma 2 follows directly from the theorem proved in Sec. 2.

www.manaraa.com

431

of supplementary rules has been developed, a "formal
proof" reduces to little more than an informal indication
of how a formal proof could be constructed.

4. General Reservations

The axioms and rules of inference quoted in this paper
have implicitly assumed the absence of side effects of the
evaluation of expressions and conditions. In proving prop
erties of programs expressed in a language permitting side
effects, it would be necessary to prove their absence in
each case before applying the appropriate proof technique.
If the main purpose of a high level programnring language
is to assist in the construction and verification of correct
programs, it is doubtful whether the use of functional
notation to call procedures with side effects is a genuine
advantage.

Another deficiency in the axioms and rules quoted above
is that they give no basis for a proof that a program suc
cessfully terminates. Failure to terminate may be due to an
infinite loop; or it may be due to violation of an imple
mentation-defined limit, for example, the range of numeric
operands, the size of storage, or an operating system time
limit. Thus the notation "P { Q} R" should be interpreted
"provided that the program successfully terminates, the
properties of its results are described by R." It is fairly
easy to adapt the axioms so that they cannot be used to
predict the "results" of nonterminating programs; but the
actual use of the axioms would now depend on knowledge
of many implementation-dependent features, for example,
the size and speed of the computer, the range of numbers,
and the choice of overflow technique. Apart from proofs of
the avoidance of infinite loops, it is probably better to
prove the "conditional" correctness of a program and rely
on an implementation to give a warning if it has had to
abandon execution of the program as a result of violation
of an implementation limit.

www.manaraa.com

432

Finally it is necessary to list some of the areas which have
not been covered: for example, real arithmetic, bit and
character manipulation, complex arithmetic, fractional
arithmetic, arrays, records, overlay definition, files, input/
output, declarations, subroutines, parameters, recursion,
and parallel execution. Even the characterization of integer
arithmetic is far from complete. There does not appear to
be any great difficulty in dealing with these points, pro
vided that the programming language is kept simple.
Areas which do present real difficulty are labels and jumps,
pointers, and name parameters. Proofs of programs ·which
made use of these features are likely to be elaborate, .and
it is not surprising that this should be reflected "in :the
complexity of the underlying axioms.

5. Proofs of Program Correctness

The most important property of a program is whether:it
accomplishes the intentions of its user. If these intentions
can be described rigorously by making assertions about the
values of variables at the end (or at intermediate points) of
the execution of the program, then the techniques described
in this paper may be used to proye the· correctness of the
program, provided that the implementation of the pro
gramming language conforms to the axioms and rules which
have been used in the proof. This fact itself might also be
established by deductive reasoning, using an axiom set
which describes the logical properties of the hardware
circuits. When the correctness of a program, its compiler,
and the hardware of the computer have all been established
",ith mathematical certainty, it will be possible to place
great reliance on the results of the program, and predict
their properties with a confidence limited only by the
reliability of the electronics.

The practice of supplying proofs for nontrivial programs
will not become widespread until considerably more power-

www.manaraa.com

433

ful proof techniques become available, and even then will
not be easy. But the practical advantages of program prov
ing will eventually outweigh the difficulties, in view of the
increasing costs of programmjng error. At present, the
method which a programmer uses to convince himself of
the correctness of his program is to try it out in particular
cases and to modify it if the results produced do not cor
respond to his intentions. After he has found a reasonably
wide variety of example cases on which the program seems
to work, he believes that it will always work. The time
spent in this program testing is often more than half the
time spent on the entire programming project; and with a
realistic costing of nlachine time, two thirds (or more) of
the cost of the project is involved in removing errors during
this phase.

The cost of removing errors discovered after a program
has gone into use is often greater, particularly in the case
of items of computer nlanufacturer's software for which a
large part of the expense is borne by the user. And finally,
the cost of error in certain types of program may be almost
incalc~lable-a lost spacecraft, a collapsed building, a
crashed aeroplane, or a world war. Thus the practice of
program proving is not only a theoretical pursuit, followed
in the interests of academic respectability, but a serious
recommendation for the reduction of the costs associated
with programming error.

The practice of proving programs is likely to alleviate
some of the other problems which afHict the computing
world. For example, there is the problem of program docu
mentation, which is essential, firstly, to inform a potential
user of a subroutine how to use it and what it accomplishes,
and secondly, to assist in further development when it
becomes necessary to update a program to meet changing
circumstances or to improve it in the light of increased
knowledge. The most rigorous method of formulating the

www.manaraa.com

434

purpose of a subroutine, as well as the conditions of its
proper use, is to make assertions about the values of vari
ables before and after its execution. The proof of the cor
rectness of these assertions can then be used as a lemma in
the proof of any program which calls the subroutine. Thus,
in a large program, the structure of the whole can be clearly
mirrored in the structure of its proof. Furthermore, when
it becomes necessary to modify a program, it will always be
valid to replace any subroutine by another which satisfies
the same criterion of correctness. Finally, when examinjng
the detail of the algorithm, it seems probable that the proof
will be helpful in explaining not only what is happening
but why.

Another problem which can be solved, insofar as it is
soluble, by the practice of program proofs is that of trans
ferring programs from one design of computer to another.
Even when 'written in a so-called machine-independent
programming language, many large programs inadvert
ently take advantage of some machine-dependent prop
erty of a particular implementation, and unpleasant and
expensive surprises can r&lllt when attempting to transfer
it to another machine. However, presence of a machine
dependent feature will always be revealed in advance by
the failure of an attempt to prove the program from ma
chine-independent axioms. The programmer will then have
the choice of formulating his algorithm in a machine
independent fashion, possibly with the help of environment
enquiries; or if this involyes too much effort or inefficiency,
he can deliberately construct a machine-dependent pro
gram, and rely for his proof on some machine-dependent
axiom, for example, one of the versions of All (Section 2).
In the latter case, the axiom must be explicitly quoted as
one of the preconditions of successful use of the program.
The program can still, with complete confidence, be trans
ferred to any other machine which happens to satisfy the

www.manaraa.com

435

same machine-dependent axiom; but if it becomes neces
sary to transfer it to an implementation which does not,
then all the places where changes are required will be
clearly annotated by the fact that the proof at that point
appeals to the truth of the offending machine-dependent .
aXIOm.

Thus the practice of proving programs would seem to
lead to solution of three of the most pressing problems in
software and programming, namely, reliability, documen
tation, and compatibility. However, program proving, cer
tainly at present, will be difficult even for programmers of
high caliber; and may be applicable only to quite simple
progranl designs. As in other areas, reliability can be pur
chased only at the price of simplicity.

6. ForDlaI Language Definition

A high level programming language, such as ALGOL,

FORTRAN, or COBOL, is usually intended to be implemented
on a variety of computers of differing size, configuration,
and -design. It has been found a serious problem to define
these languages with sufficient rigour to ensure compat
ibility among all implementors. Since the purpose of com
patibility is to facilitate interchange of programs ex
pressed in the language, one way to achieve this would be to
insist that all implementations of the language shall "sat
isfy" the axioms and rules of inference which underlie
proofs of the properties of programs expressed in the
language, so that all predictions based on these proofs ",ill
be fulfilled, except in the event of hardware failure. In
effect, this is equivalent to accepting the axioms and rules
of inference as the ultimately definitive specification of the
meaning of the language.

Apart from giving an immediate and possibly even
provable criterion for the correctness of an implementation,
the axiomatic technique for the definition of programming

www.manaraa.com

436

language semantics appears to be like the formal syntax of
the ALGOL 60 report, in that it is sufficiently simple to be
understood both by the implementor and by the reasonably
sophisticated user of the language. It is only by bridging
this widening communication gap in a single document
(perhaps even provably consistent) that the maximum
advantage can be obtained from a formal language def
inition.

Another of the great advantages of using an axiomatic
approach is that axioms offer a simple and flexible tech
nique for leaving certain aspects of a language undefined,
for example, range of integers, accuracy of floating point,
and choice of overflow technique. This is absolutely es
sential for standardization purposes, since otherwise the
language will be impossible to implement efficiently on
differing hardware designs. Thus a programmjng language
standard should consist of a set of axioms of universal
applicability, together with a choice from a set of supple
mentary axioms describing the range of choices facing an
implementor. An example of the use of axioms for this
purpose was given in Section 2.

Another of the objectives of formal language definition
is to assist in the design of better programming languages.
The regularity, clarity, and ease of implementation of the
ALGOL 60 syntax may at least in part be due to the use of
an elegant formal technique for its definition. The use of
axioms may lead to similar advantages in the area of
"semantics," since it seems likely that a language which can
be described by a few "self-evident" axioms from which
proofs will be relatively easy to construct will be preferable
to a language with many obscure axioms which are dif
ficult to apply in proofs. Furthermore, axioms enable the
language designer to express his general intentions quite
simply and directly, without the mass of detail which
usually accompanies algorithmic descriptions. Finally, ax-

www.manaraa.com

437

ioms can be formulated in a manner largely independent
of each other, so that the designer can work freely on one
axiom or group of axioms ,,-ithout fear of unexpected in
teraction effects with other parts of the language.

Ad;nowledgments. Many axionlatic treatments of com
puter programming [1, 2, 3] tackle the problem of proving
the equivalence, rather than the correctness, of algorithms.
Other approaches [4, 5] take recursive functions rather
than programs as a starting point for the theory. The
suggestion to use axioms for defining the primitive opera
tions of a computer appears in [6, 7]. The importance of
program proofs is clearly emphasized in [9], and an in
formal technique for prO'viding thenl is described. The
suggestion that the specification of proof techniques pro
vides an adequate formal definition of a programming
language first appears in [8]. The formal treatment of p;ro
gram execution presented in this paper is clearly derived
from Floyd. The main contributions of the author appear
to be: (1) a suggestion that axioms nlay provide a simple
solution to the problem of leaving certain aspects of a
language undefined; (2) a comprehensive eyaluation of
the possible benefits to be gained by adopting this approach
both for program proving and for formal language defini
tion.

However, the formal material presented here has only
an expository status and represents only a nunute propor
tion of what remains to be done. It is hoped that many of
the fascinating problems involved will be taken up by
others.

RECEIVED XOt"EMBER, 1968; REVISED MAY, 1969

www.manaraa.com

438

REFERENCES

1. YANOV, Yu I. Logical operator schemes. Kybernetika 1, (1958).
2. IGARASm, S. An axiomatic approach to equivalence problems

of algorithms with applications. Ph.D. Thesis 1964. Rep.
Compt. Centre, U. Tokyo, 1968, pp. 1-101.

3. DE BAKKER, J. W. Axiomatics of simple assignment statements.
M.R. 94,)fathematisch Centrum, Amsterdam, June 1968.

4. MCCARTHY, J. Towards a mathematical theory of computation.
Proc. IFIP Cong.1962, North Holland Pub. Co., Amsterdam,
1963.

5. BURSTALL, R. Proving properties of programs by structural in
duction. Experimental Programming Reports: Xo. 17 DMIP,
Edinburgh, Feb. 1968.

6. VAN WI1XGA.ARDEN, A. Numerical analysis as an independent
science. BIT 6 (1966), 66-81.

7. LASKI, J. Sets and other types. ALGOL Bull. 27, 1968.
8. FLOYD, R. W. Assigning meanings to programs. Proc. Amer.

Math. Soc. Symposia in Applied l\1athematics, Vol. 19, pp.
19-31.

9. NAUR, P. Proof of algorithms by general snapshots. BIT 6
(1966), 31()-316.

www.manaraa.com

C.A.R. Hoare
Proof of Correctness of Data Representations

Acta Informatica, Vol. 1, Pasco 4, 1972
pp.271-281

www.manaraa.com

Acta Informatica 1. 271-281 (1972)
© by Springer-Verlag 1972

Proof of Correctness of Data Representations

c. A. R. Hoare

Received February 16. 1972

Summary. A powerful method of simplifying the proofs of program correctness
is suggested; and some new light is shed on the problem of functions with side-effects.

1. Introduction

In the development of programs by stepwise refinement [1-4J. the programmer
is encouraged to postpone the decision on the representation of his data until
after he has designed his algorithm, and has expressed it as an "abstract" pro
gram operating on "abstract" data. He then chooses for the abstract data some
convenient and efficient concrete representation in the store of a computer;
and finally programs the primitive operations required by his abstract program
in terms of this concrete representation. This paper suggests an automatic method
of accomplishing the transition between an abstract and a concrete program,
and also a method of proving its correctness; that is, of proving that the concrete
representation exhibits all the properties expected of it by the "abstract" pro
gram. A similar suggestion was made more formally in algebraic terms in [5J,
which gives a general definition of simulation. However, a more restricted
definition may prove to be more useful in practical program proofs.

If the data representation is proved correct, the correctness of the final
concrete program depends only on the correctness of the original abstract pro
gram. Since abstract programs are usually very much shorter and easier to prove
correct, the total task of proof has been considerably lightened by factorising
it in this way. Furthermore, the two parts of the proof correspond to the successive
stages in program development, thereby contributing to a constructive approach
to the correctness of programs [6J. Finally, it must be recalled that in the case
of larger and more complex programs the description given above in terms of
two stages readily generalises to multiple stages.

2. Concepts and Notations

Suppose in an abstract program there is some abstract variable t which is
regarded as being of type T (say a small set of integers). A concrete representation
of t will usually consist of several variables Ct, C2 • •••• CIS whose types are directly
(or more directly) represented in the computer store. The primitive operations
on the variable t are represented by procedures PI> P2 •... , P whose bodies carry
out on the variables c1• c2 • •••• CIS a series of operations directly (or more directly)
performed by computer hardware. and which correspond to meaningful operations
on the abstract variable t. The entire concrete representation of the type T can

www.manaraa.com

442

be expressed by declarations of these variables and procedures. For this we
adopt the notation of the SIMULA 67 [7] class declaration. which specifies the
association between an abstract type T and its concrete representation:

class T;
begin ... declarations of c1• c2 • •••• c,. ... ;

procedure PI <formal parameter part); Q1;
procedure P2 <formal parameter part); Q2;

procedure Pm <formal parameter part); Qm;
Q

end;

(1)

where Q is a piece of program which assigns initial values (if desired) to the
variables 'I. c2 • •••• c,.. As in ALGOL 60. any of the p's may be functions; this is
signified by preceding the procedure declaration by the type of the procedure.

Having declared a representation for a type T. it will be required to use this
in the abstract program to declare all variables which are to be represented in
that way. For this purpose we use the notation:

var(T) t;

or for multiple declarations:

var (T) ~. t2 • ••• ;

The same notation may be used for specifying the types of arrays, functions.
and parameters. Within the block in which these declarations are made. it will
be required to operate upon the variables t, ~, ...• in the manner defined by the
bodies of the procedures PI> P2' ... ' Pm. This is accomplished by introducing
a compound notation for a procedure call:

to· Pi <actual parameter part);

where to names the variable to be operated upon and Pi names the operation
to be performed.

If Pi is a function, the notation displayed above is a function designator;
otherwise it is a procedure statement. The form t,. P; is known as a compound
identifier.

These concepts and notations have been closely modelled on those of SIMULA 67.
The only difference is the use of var (T) instead of ref(T). This reflects the fact
that in the current treatment, objects of declared classes are not expected to be
addressed by reference; usually they will occupy storage space contiguously in
the local workspace of the block in which they are declared, and will be addressed
by offset in the same way as normal integer and real variables of the block.

3. Example

As an example of the use of these concepts, consider an abstract program
which operates on several small sets of integers. It is known that none of these
sets ever has more than a hundred members. Furthermore, the only operations

www.manaraa.com

443

actually used in the abstract program are the initial clearing of the set. and the
insertion and removal of individual members of the set. These are denoted by
procedure statements

s . insert (i)
and

s· remove (i).

There is also a function" s . has (i)". which tests whether i is a member of s.
It is decided to represent each set as an array A of 100 integer elements.

together with a pointer m to the last member of the set; m is zero when the set is
empty. This representation can be declared:

class smallintset;
begin integer m; integer array A [1: 100];

procedure insert (i) ; integer i;
begin integer i;

for i:= 1 step 1 until m do
if A [iJ = i then go to end insert;
m:=m+1;
A [m]:=i;

end insert: end insert;

procedure remove (i); integer i;
begin integer i. k;

for i:= 1 step 1 until m do
if A [iJ =i then

begin for k: = i +1 step 1 until m do A [k -1]: =A [k];
comment close the gap over the removed member;
m:=m-1;
go to end remove

end;

end remove: end remove;

Boolean procedure has (i); integer i;
begin integer i;

has:=false;
for i:= 1 step 1 until m do

if A [1] =i then
begin has:=true; go to end contains end;

end contains: end contains;

m:=O; comment initialise set to empty;

end smallintset;
Note: as in SIMULA 67. simple variable parameters are presumed to be called

by value.

www.manaraa.com

444

4. Semantics and Implementation

The meaning of class declarations and calls on their constituent procedures
may be readily explained by textual substitution; this also gives a useful clue to
a practical and efficient method of implementation. A declaration:

var(T)t;

is regarded as equivalent to the unbracketed body of the class declaration with
begin ... end brackets removed, after every occurrence of an identifier c, or Pi
declared in it has been prefixed by lit· ". If there are any initialising statements in
the class declaration these are removed and inserted just in front of the compound
tail of the block in which the declaration is made. Thus if T has the form displayed
in (1), vor(T)t is equivalent to:

... declarations for t . ~, t . clI , ... , t . C • ;

procedure t . Pl (...) ; Q~;
procedure t· Pa(...); Q~;

procedure t· P",(...); Q~;

where Q~, Q;, ... , Q~, Q' are obtained from Ql' QI' ...• Q",. Q by prefixing every
occurrence of ~. cl ••••• c... Pt. PI' ...• P ... by "t· ". Furthermore. the initialising
statement Q' will have been inserted just ahead of the statements of the block
body.

If there are several variables of class T declared in the same block. the method
described above can be applied to each of them. But in a practical implementation,
only one copy of the procedure bodies will be translated. This would contain
as an extra parameter an address to the block of ~. CI • •••• c .. on which a particular
call is to operate.

5. Criterion of Correctness

In an abstract program, an operation of the form

t,' P;(O-t, a2, ... , a..,) (2)

will be expected to carry out some transformation on the variable to. in such a
way that its resulting value is li(t" 4t, a2 • ... , a..,), where Ii is some primitive
operation required by the abstract program. In other words the procedure
statement is expected to be equivalent to the assignment

ti: = I; (t,. 4t, a., .•. , a..,);

When this equivalence holds. we say that Pi models Ii' A similar concept of
modelling applies to functions. It is desired that the proof of the abstract program
may be based on the equivalence. using the rule of assignment [8]. so that for
any propositional formula 5, the abstract programmer may assume:

5~(tl'''''''''''''''''/){t .. Pi(4t. a2 • a"1)}5. l

1 5; stands for the result of replacing all free occurrences of x in 5 by y: if any free
variables of y would become bound in 5 by this substitution, this is avoided by pre
liminal]' systematic alteration of bound variables in S.

www.manaraa.com

445

In addition. the abstract programmer will wish to assume that all declared
variables are initialised to some designated value do of the abstract space.

The criterion of correctness of a data representation is that every Pi models
the intended Ii and that the initialisation statement "models" the desired initial
value; and consequently. a program operating on abstract variables may
validly be replaced by one carrying out equivalent operations on the concrete
representation.

Thus in the case of smallintset. we require to prove that:

var(i)t initialises t to {} (the empty set)

t· insert (i) = t: = tv {i}

t· remove (i) = t:=tr. -'{i}
t.has(i) = iEt.

6. Proof Method

(3)

The first requirement for the proof is to define the relationship between the
abstract space in which the abstract program is written. and the space of the
concrete representation. This can be accomplished by giving a function
d (Ct. C2 • •••• c ..) which maps the concrete variables into the abstract object
which they represent. For example. in the case of smallintset. the representation
function can be defined as

demo A) ={i: integerl3k(1 <k<m&A [k] =i)} (4)

or in words. "(m. A) represents the set of values of the first m elements of A".
Note that in this and in many other cases d will be a many-one function. Thus
there is no unique concrete value representing any abstract one.

Let t stand for the value of d (cl • C2 • •• '. cm) before execution of the body Q i
of procedure Pi' Then what we must prove is that after execution of Q i the follow
ing relation holds:

d(CI> C2' ...• c ..) =Ii(t. VI' V2 • ...• Viii)

where VI' V2 • ...• Viii are the fonnal parameters of Pi'
Using the notations of [8]. the requirement for proof may be expressed:

t=d(Ct. c2 • ...• c ..) {Qi}d(Ct. c2 • ...• c ..) =.li(t. VI> v2 • •••• Viii)

where t is a variable which does not occur in Q i' On the basis of this we may say:
t· Pi(~' a2••••• a ..) =t:= I;(t.~. a2 • •••• a ..) with respect to d. This deduction
depends on the fact that no Q i alters or accesses any variables other than Ct.
c2 • •••• c,,; we shall in future assume that this constraint has been observed.

In fact for practical proofs we need a slightly stronger rule. which enables
the programmer to give an invariant condition I (Ct. c2 • •••• c ..). defining some
relationship between the constituent concrete variables. and thus placing a
constraint on the possible combinations of values which they may take. Each
operation (except initialisation) may assume that I is true when it is first entered;
and each operation must in return ensure that it is true on completion.

www.manaraa.com

446

In the case of smallintset, the correctness of all operations depends on the
fact that m remains within the bounds of A, and the correctness of the remove
operation is dependent on the fact that the values of A [1], A [2], ... , A Em] are
all different; a simple expression of this invariant is:

size (d(m, A)) =m ~ 100. (1)

One additional complexity will often be required; in general, a procedure
body is not prepared to accept arbitrary combinations of values for its parameters,
and its correctness therefore depends on satisfaction of some precondition
p (t, ~, az, ••• , a,,) before the procedure is entered. For example, the correctness
of the insert procedure depends on the fact that the size of the resulting set is
not greater than 100, that is

size (k, {i}) ~ 100

This precondition (with t replaced by d) may be assumed in the proof of the body
of the procedure; but it must accordingly be proved to hold before every call
of the procedure.

It is interesting to note that any of the p's that are functions may be permitted
to change the values of the c's, on condition that it preserves the truth of the
invariant, and also that it preserves unchanged the value of the abstract object d.
For example, the function "has" could reorder the elements of A; this might be
an advantage if it is expected that membership of some of the members of the
set will be tested much more frequently than others. The existence of such a
concrete side-effect is wholly invisible to the abstract program. This seems to
be a convincing explanation of the phenomenon of "benevolent side-effects",
whose existence I was not prepared to admit in [8].

7. Proof of Smallintset

The proof may be split into four parts, corresponding to the four parts of the
class declaration:

7.1. Initialisation

What we must prove is that after initialisation the abstract set is empty and
that the invariant I is true:

true {m:=OHiI3k(1 ~k ~m&A [kJ =i)} ={}

& size (d(m, a)) =m ~ 100

Using the rule of assignment, this depends on the obvious truth of the lemma

{iI3k{1 ~k ~ O&A [k] =i} ={}& size ({}) =0 ~ 100

7.2. Has
What we must prove is

d(m, A) = k&I{Qbasld(m, A) =k&I& has=iEd(m, A)

www.manaraa.com

447

where Qhas is the body of has. Since Qhas does not change the value of m or A, the
truth of the first two assertions on the right hand side follows directly from
their truth beforehand. The invariant of the loop inside Qhas is:

i::;;'m& has=iEd(j, A)

as may be verified by a proof of the lemma:

i <m&i~m&has=iEd(j, A}

~ ifA[f+1]=ithen (true=iEd(m,A})

else has =iEd(j +1, A}.

Since the final value of i is m, the truth of the desired result follows directly
from the invariant; and since the" initial" value of i is zero, we only need the
obvious lemma

false =iEd(O, A}

7.3. Insert
What we must prove is:

P&d(m, A} =k&I{QmserJd(m, A) =(kv {i}} &1,

where P = dfsize (d (m, A) v {i}) < 100.
The invariant of the loop is:

P&d(m, A) =k&I&ied(}, A)&o:::;;'i<m

as may be verified by the proof of the lemma

d(m,A) =k & iEd(i,A} &O<i~m&i <m~
if A [f + 1] =i then d(m, A) = (kv{i})

elseo:::;;i+1 <m&iEd(i+1,A)

(6)

(The invariance of P&d(m, A) =k&I follows from the fact that the loop does
not change the values of m or A). That (6) is true before the loop follows from
ied(O, A}.

We must now prove that the truth of (6), together with i =m at the end of
the loop, is adequate to ensure the required final condition. This depends on proof
of the lemma

i =m&(6} vd(m +1, A'} = (kv{i}) & size (d(m +1, A'}) =m +1 :::;;'100

where A' = (A, m +1: i) is the new value of A after assignment of i to A [m +1].

7.4. RetnfJve
What we must prove is

d(m, A} =k&I {QremovJd(m, A) = (k("\ --. {i}} &1.

The details of the proof are complex. Since they add nothing more to the purpose
of this paper, they will be omitted.

www.manaraa.com

448

8. Formalities

Let T be a class declared as shown in Section 2, and let.9l, I, P" I; be formulae
as explained in Section 6 (free variable lists are omitted where convenient). Suppose
also that the following m +1 theorems have been proved:

true {Q}I &.91 =do

.91 =t&I &P;{t) {Q;} I &.91 =I;(t}

for procedure bodies Q;

.91 =t&I &P;{t} {Qi} I &.91 =t&P; = I;(t)
for function bodies Q;.

(7)

(8)

(9)

In this section we show that the proof of these theorems is a sufficient condition
for the correctness of the data representation, in the sense explained in Section 5.

Let X be a program beginning with a declaration of a variable t of an abstract
type, and initialising it to do. The subsequent operations on this variable are of
the form

(i) t: = I; (t, ~, a2, ••• , a"l) if Q; is a: proced'Ure

(2) I;(t,~, at, ••. , a"l) if Q; is a :function.

Suppose also that P; (t, ~, at, ... , a..,) has Deen proved true before each such
operation.

Let X' be a program formed from X by replacements described in Section 4,
as well as the following (see Section 5):

(1) initialisation t: = do replaced by Q"

(2) t: = I;(t, ~, at, ••• , a..,) replaced. by Ii· P; (1Zt, at, ... , atlj)

(4) I;{t,~, at, ... , atlj) by t· P;(IZt •. a,.,.~ .. , a..,).

Theorem. Under conditions described above, if X and X' both terminate,
the value of t on termination of X will be .91 (~, c2, ••• , c ..). where c", c2, ••• , c ..
are the values of these variables on termination of X'.

Corollary. If R (t) has been proved true on termination of X, R (.91) will be
true on termination of X'.

Prool. Consider the sequence S of operations on t executed during the computa
tion of X, and let S' be the sequence of subcomputations of X' arising from
execution of the procedure calls which have replaced the corresponding operations
on t in X. We will prove that there is a close elementwise correspondence between
the two sequences, and that

(a) each item of S' is the very procedure statement which replaced the cor
responding operation in S.

(b) the values of all variables (and hence also the actual parameters) which
are common to both "programs" are the same after each operation.

(c) the invariant I is true between successive items of S'.

www.manaraa.com

449

(d) if the operations are function calls, their results in both sequences are
the same.

(e) and if they are procedure calls (or the initialisation) the value of t imme
diately after the operation in 5 is given by d, as applied to the values of cl ,

c2, ••• , c .. after the corresponding operation in 5'.
It is this last fact, applied to the last item of the two sequences, that estab

lishes the truth of the theorem.
The proof is by induction on the position of an item in S.

(1) Basis. Consider its first item of 5, t:=do' Since X and X' are identical
up to this point, the first item of 5' must be the subcomputation of the procedure
Q which replaced it, proving (a). By (7), I is true after Q in 5', and also d = do,
proving (c) and (e). (d) is not relevant. Q is not allowed to change any non-local
variable, proving (b).

(2) Induction step. We may assume that conditions (a) to (e) hold immediately
after the (n -1)-th item of 5 and 5', and we establish that they are true after the
n-th. Since the value of all other variables (and the result, if a function) were the
same after the previous operation in both sequences, the subsequent course of the
computation must also be the same until the very next point at which X' differs
from X. This establishes (a) and (b). Since the only permitted changes to the
values of t . 11., t . C2, ••• , t . c .. occur in the sUbcomputations of 5', and I contains
no other variables, the truth of I after the previous sUbcomputation proves
that it is true before the next. Since 5 contains all operations on t, the value of t
is the same before the n-th as it was after the (n -1)-th operation, and it is still
equal to d. It is given as proved that the appropriate P; (t) is true before each
call of Ii in S. Thus we have established that d =t&I &I}(t) is true before the
operation in 5'. From (8) or (9) the truth of (c), (d), (e) follows immediately.
(b) follows from the fact that the assignment in 5 changes the value of no other
variable besides t; and similarly, Q i is not permitted to change the value of any
variable other than t . c1> t . c2, ••• , t . c ...

This proof has been an informal demonstration of a fairly obvious theorem.
Its main interest has been to show the necessity for certain restrictive conditions
placed on class declarations. Fortunately these restrictions are formulated as
scope rules, which can be rigorously checked at compile time.

9. Extensions

The exposition of the previous sections deals only with the simplest cases
of the Simula 67 class concept; nevertheless, it would seem adequate to cover
a wide range of practical data representations. In this section we consider the
possibility of further extensions, roughly in order of sophistication.

9.1. Class Parameters

It is often useful to permit a class to have formal parameters which can be
replaced by different actual parameters whenever the class is used in a declaration.
These parameters may influence the method of representation, or the identity

www.manaraa.com

450

of the initial value, or both. In the case of smallintset, the usefulness of the de
finition could be enhanced if the maximum size of the set is a parameter, rather
than being fixed at 100.

9.2. Dynamic Object Generation

In Simula 67, the value of a variable c of class C may be reinitialised by an
assignment:

c: = new C <actual parameter part>;

This presents no extra difficulty for proofs.

9.3. Remote Identification

In many cases, a local concrete variable of a class has a meaningful inter
pretation in the abstract space. For example, the variable m of smallintset
always stands for the size of the set. If the main program needs to test the size
of the set, it would be possible to make this accessible by writing a function

integer procedure size; size:=m;

But it would be simpler and more convenient to make the variable more directly
accessible by a compound identifier, perhaps by declaring it

public integer m;

The proof technique would specify that

m=size (.9.I(m, A))

is part of the invariant of the class.

9.4. Class Concatenation

The basic mechanism for representing sets by arrays can be applied to sets
with members of type or class other than just integers. It would therefore be
useful to have a method of defining a class" smallset", which can then be used to
construct other classes such as "smal1realset" or "smallcarset", where "car" is
another class. In SIMULA 67, this effect can be achieved by the class/subclass and
virtual mechanisms.

9.0. Recursive Class Declaration

In Simula 67, the parameters of a class, or of a local procedure of the class,
and even the local variables of a class, may be declared as belonging to that very
same class. This permits the construction of lists and trees, and their processing
by recursive procedure activation. In proving the correctness of such a class,
it will be necessary to assume the correctness of all "recursive" operations in
the proofs of the bodies of the procedures. In the implementation of recursive
classes, it will be necessary to represent variables by a null pointer (none) or by
the address of their value, rather than by direct inclusion of space for their

www.manaraa.com

451

values in block workspace of the block to which they are local. The reason for
this is that the amount of space occupied by a value of recursively defined type
cannot be detennined at compile time.

It is worthy of note that the proof-technique recommended above is valid
only if the data structure is .. well-grounded" in the sense that it is a pure tree,
without cycles and without convergence of branches. The restrictions suggested
in this paper make it impossible for local variables of a class to be updated except
by the body of a procedure local to that very same activation of the class; and I
believe that this will effectively prevent the construction of structures which
are not well-grounded, provided that assignment is implemented by copying the
complete value, not just the address.

I am deeply indebted to Doug Ross and to all authors of referenced works. Indeed,
the material of this paper represents little more than my belated understanding and
formalisation of their original work.

References

1. Wirth, N.: The development of programs by stepwise refinement. Comm. ACM.
14, 221-227 (1971).

2. Dijkstra, E. W.: Notes on structured programming. In Structured Programming.
Academic Press (1972).

3. Hoare, C. A. R.: Notes on data structuring. Ibid.
4. Dahl, 0.-J.: Hierachical program structures. Ibid.
5. Milner, R.: An algebraic definition of simulation between programs. CS 205 Stanford

University, February 1971.
6. Dijkstra, E. W.: A constructive approach to the problem of program correctness.

BIT. 8,174-186 (1968).
7. Dahl, 0.-J., Myhrhaug, B., :Nygaard, K.: The SIMULA 67 common base language.

Norwegian Computing Center, Oslo, Publication No. S-22, 1970.
8. Hoare, C. A. R.: An axiomatic approach to computer programming. Comm.

ACM. 12, 576-580, 583 (1969).

Prof. C. A. R. Hoare
Computer Science
The Queen's University of Belfast
Belfast BT 71 NN
Northern Ireland

www.manaraa.com

Michael Jackson

Constructive Methods of Program Design

Lecture Notes in Computer Science, Vol 44,
ed. by G. Goos and J. Hartmann

Springer-Verlag, Berlin, Heidelberg, New York
pp.236-262

www.manaraa.com

Abstract

CONSTRUCTIVE METHODS

OF PROGRAM DESIGN

M. A. Jackson
Michael Jackson Systems Limited
101 Hamilton Terrace, London NW8

Correct programs cannot be obtained by attempts to test or to prove in

correct programs: the correctness of a program should be assured by the
design procedure used to build it.

A suggestion for such a design procedure is presented and discussed.

The procedure has been developed for use in data processing, and can be

effectively taught to most practising programmers. It is based on cor

respondence between data and program structures, leading to a decompos

ition of the program into distinct processes. The model of a process

is very simple, permitting use of simple techniques of communication,

activation and suspension. Some wider implications and future possi
bilities are also mentioned.

1. Introduction

In this paper I would like to present and discuss what I believe to be

a more constructive method of program design. The phrase itself is im
portant; I am sure that no-one here will object if I use a LIFO discip
line in briefly elucidating its intended meaning.

'Design' is primarily concerned with structure; the designer must say
what parts there are to be and how they are to be arranged. The cruc
ial importance of modular programming and structured programming (even
in their narrowest and crudest manifestations) is that they provide some
definition of what parts are permissible: a module is a separately com
piled, parameterised subroutine; a structure component is a sequence, an

iteration or a selection. With such definitions, inadequate though they

may be, we can at least begin to think about design: what modules should

make up that program, and how should they be arranged? should this pro

gram be an iteration of selections or a sequence of iterations? Without

such definitions, design is meaningless. At the top level of a problem

there are pN possible designs, where P is the number of distinct types

of permissible part and N is the number of parts needed to make up the

whole. So, to preserve our sanity, both P and N must be small: modular

programming, using tree or hierarchical structures, offers small values

of N; structured programming offers, additionally, small values of P.

www.manaraa.com

456

'Program' or, rather, 'programming' I would use in a narrow sense. Mod
elling the problem is 'analysis', 'programming' is putting the model on
a computer. Thus, for example, if we are asked to find a prime number
in the range 1050 to 1060 , we need a number theorist for the analysis,
if we are asked to program discounted cash flow, the analysis calls for
a financial expert. One of the major ills in data processing stems from
uncertainty about this distinction. In mathematical circles the distin
ction is often ignored altogether, to the detriment, I believe, of our

understanding of programming. Programming is about computer programs,
not about number theory, or financial planning, or production control.

'Method' is defined in the Shorter OED as a 'procedure for attaining an

object'. The crucial word here is 'procedure'. The ultimate method,
and the ultimate is doubtless unattainable, is a procedure embodying a

precise and correct algorithm. To follow the method we need only exec

ute the algorithm faithfully, and we will be led infallibly to the de

sired result. To the extent that a putative method falls short of this

ideal it is less of a method.

To be 'constructive', a method must itself be decomposed into distinct

steps, and correct execution of each step must assure correct execution

of the whole method and thus the correctness of its product. The key
requirement here is that the correctness of the execution of-a step
should be largely verifiable without reference to steps not yet executed
by the designer. This is the central difficulty in stepwise refinement:
we can judge the correctness of a refinement step only by reference to
what is yet to come, and hence only by exercising a degree of foresight
to which few people can lay claim.

Finally, we must recognise that design methods today are intended for
use by human beings: in spite of what was said above about constructive
methods, we need, now and for some time to come, a substantial ingred
ient of intuition and subjectivity. So what is presented below does not
claim to be fully constructive - merely to be 'more constructive'. The

reader must supply the other half of the comparison for himself, measur

ing the claim against the yardstick of his own favoured methods.

2. Basis of the Method

The basis of the method is described, in some detail, in (1). It is ap

propriate here only to illustrate it by a family of simple example pro

blems.

Example 1

A cardfile of punched cards is sorted into ascending sequence of values
of a key which appears in each card. Within this sequence, the first
card for each group of cards with a common key value is a header card,
while the others are detail cards. Each detail card carries an integer

www.manaraa.com

457

amount. It is required to produce a report showing the totals of amount
for all keys.

solution I

The first step in applying the method is to describe the structure of
the data. We use a graphic notation to represent the structures as

trees:-

The above representations are equivalent to the following (in BNF with

iteration instead of recursion):

<cardfile> ::= {<grOUP)}~
<group> ::= <header><groupbody>

<groupbody> ::= {<detail>}~

<report> ::= <title><reportbody>

<reportbody> ::= {<totalline>}~

The second step is to compose these data structures into a program

structure:-

PRODUCE
TITLE

CONSUME
HEADER

This structure has the following properties:

PRODUCE
TOTALLINE

It is related quite formally to each of the data structures.

We may recover anyone data structure from the program struc

ture by first marking the leaves corresponding to leaves of

www.manaraa.com

458

the data structure, and then marking all nodes lying in a path
from a marked node to the root.

The correspondences (cardfile : report) and (group : totalline)

are determined by the problem statement. One report is deriv
able from one cardfilel one total line is derivable from one
group, and the totallines are in the same order as the groups.

The structure is vacuous, in the sense that it contains no ex
ecutable statements: it is a program which does nothingl it is
a tree without real leaves.

The third step in applying the method is to list the executable operat
ions required and to allocate each to its right place in the program
structure. The operations are elementary executable statements of the
programming language, possibly after enhancement of the language by a
bout of bottom-up design 1 they are enumerated, essentially, by working
back from output to input along the obvious data-flow paths. Assuming a
reasonably conventional machine and a line printer (rather than a char
acter printer), we may obtain the list:

1. write title

2. write total line (groupkey, total)

3. total := total + detail.amount

4. total := 0

5. groupkey := header. key

6. open cardfile
7. read cardfile
8. close cardfile

Note that every operation, or almost every operation, must have operands
which are data objects. Allocation to a program structure is therefore
a trivial task if the program structure is correctly based on the data
structures. This triviality is a vital criterion of the success of the
first two steps. The resulting program, in an obvious notation, is:

CARDFILE-REPORT sequence

open cardfilel read cardfilel write title;

REPORT-BODY iteration ~ cardfile.eof
total := 01 groupkey:= header.key;

read cardfile:

GROUP-BODY iteration until cardfile.eof or

detail.key # groupkey

total := total + detail. amount;
read cardfile;

GROUP-BODY end
write totalline (groupkey, total);

REPORT-BODY end

close cardfile;
CARDFI LE-REPORT end

www.manaraa.com

459

Clearly, this program may be transcribed without difficulty into any pro

cedural programming language.

Comment

The solution has proceeded in three steps: first, we defined the data
structures; second, we formed them into a program structure; third, we
listed and allocated the executable operations. At each step we have

criteria for the correctness of the step itself and an implicit check on
the correctness of the steps already taken. For example, if at the first

step we had wrongly described the structure of cardfile as

(that is: <cardfile> ::= {<card>}~
<card> ::= <header>l<detail>), we should have been able to

see at the first step that we had failed to represent everything we knew

about the cardfile. If nonetheless we had persisted in error, we would
have discovered it at the second step, when we would have been unable to

form a program structure in the absence of a cardfile component corres

ponding to totalline in report.

The design has throughout concentrated on what we may think of as a stat
ic rather than a dynamic view of the problem: on maps, not on itinerar

ies, on structures, not on logic flow. The logic flow of the finished

program is a by-product of the data structures and the correct allocat

ion of the 'read' operation. There is an obvious connection between what
we have done and the design of a very simple syntax analysis phase in a
compiler: the grammar of the input file determines the structure of the

program which parses it. We may observe that the 'true' grammar of the

cardfile is not context-free: within one group, the header and detail

cards mus~ all carry the same key value. It is because the explicit

grammar cannot show this that we are forced to introduce the variable
groupkey to deal with this stipulation.

Note that there is no error-checking. If we wish to check for errors in

the input we must elaborate the structure of the input file to accommod

ate those errors explicitly. By defining a structure for an input file

we define the domain of the program: if we wish to extend the domain, we

must extend the input file structure accordingly. In a practical data

processing system, we would always define the structure of primary input
(such as decks of cards, keyboard messages, etc) to encompass all phys

ically possible files: it would be absurd to construct a program whose
operation is unspecified (and therefore, in principle, unpredictable) in
the event of a card deck being dropped or a wrong key depressed.

www.manaraa.com

460

Example 2

The cardfile of example I is modified so that each card contains a card

type indicator with possible values 'header', 'detail' and other. The

program should take account of possible errors in the composition of a

group: there may be no header card and/or there may be cards other than
detail cards in the group body. Groups containing errors should be list

ed on an errorlist, but not totalled.

Solution 2

The structure of the report remains unchanged. The structure of the er

rorlist and of the new version of the cardfile are:

ERRORGROUpO

The structure of cardfile demands attention. Firstly, it is ambiguous:

anything which is a goodgroup is also an errorgroup. We are forced into

this ambiguity because it would be intolerably difficult - and quite un

necessary - to spell out all of the ways in which a group may be in er

ror. The ambiguity is simply resolved by the conventions we use: the

parts of a selection are considered to be ordered, and the first applic

able part encountered in a left-to-right scan is chosen. So a group can

be parsed as an errorgroup only if it has already been rejected as a

goodgroup. Secondly, a goodgroup cannot be recognised by a left-to-right

parse of the input file with any predetermined degree of lookahead. If

we choose to read ahead R records, we may yet encounter a group contain

ing an error only in the R+l'th card.

Recognition problems of this kind occur in many guises. Their essence

is that we are forced to a choice during program execution at a time when

we lack the evidence on which the choice must be based. Note that the

difficulty is not structural but is confined to achieving a workable flow

of control. We will call such problems 'backtracking' problems, and tac
kle them in three stages:-

a Ignore the recognition difficulty, imagining that a friendly
demon will tell us infallibly which choice to make. In the pre
sent problem, he will tell us whether a group is a goodgroup or

an errorgroup. Complete the design procedure in this blissful

state of confidence, producing the full program text.

www.manaraa.com

461

b Replace our belief in the demon's infallibility by a sceptical

determination to verify each 'landmark' in the data which might

prove him wrong. Whenever he is proved wrong we will execute a

'quit' statement which branches to the second part of the sel

ection. These 'quit' statements are introduced into the program

text created in stage a.

c Modify the program text resulting from stage b to ensure that

side-effects are repealed where necessary.

The.result of stage a, in accordance with the design procedure used for

example 1, is:

CFILE-REPT-ERR sequence
open cardfile; read cardfile; write title;

REPORT-BODY iteration until cardfile.eof
groupkey := card.key;

GROUP-OUTG select goodgroup

total := 0;

read cardfile;

GOOD-GROUP iteration until cardfile.eof or

detail.key r groupkey

total := total + detail.amount;

read cardfile;

GOOD-GROUP end

write totalline (groupkey, total);
GROUP-OUTG or errorgroup

ERROR-GROUP iteration until cardfile.eof or
card.key r groupkey

write errorline (card);

read cardfile;
ERROR-GROUP end

GROUP-OUTG end
REPORT-BODY end

close cardfile;

CFILE-REPT-ERR end

Note that we cannot completely transcribe this program into any program

ming language, because we cannot code an evaluable expression for the
predicate goodgroup. However, we can readily verify the correctness of

the program (assuming the infallibility of the demon). Indeed, if we

are prepared to exert ourselves to punch an identifying character into

the header card of each goodgroup - thus acting as our own demon - we

can code and run the program as an informal demonstration of its accept

ability.

We are now ready to proceed to stage b, in which we insert 'quit' state

ments into the first part of the selection GROUP-OUTG. Also, since quit
statements are not present in a normal selection, we will replace the

www.manaraa.com

462

words 'select' and 'or' by 'posit' and 'admit' respectively, thus indic

ating the tentative nature of the initial choice. Clearly, ~he land

marks to be checked are the card-type indicators in the header and det

ail cards. We thus obtain the following program:

CFILE-REPT-ERR sequence
open cardfile; read cardfile; write title;

REPORT-BODY iteration until cardfile.eof

groupkey := card. key;

GROUP-OUTG posit goodgroup
total := 0;
quit GROUP-OUTG if card. type # header;

read cardfile;
GOOD-GROUP iteration until cardfile.eof or

card. key # groupkey

quit GROUP-OUTG if card. type # detail;

total := total + detail.amount;

read cardfile;

GOOD-GROUP end

write totalline (groupkey, total);

GROUP-OUTG admit errorgrou·
ERROR-GROUP iteration until cardfile.eof or

card. key # groupkey;

write errorline (card);

read cardfile;
ERROR-GROUP end

GROUP-OUTG end
REPORT-BODY end

close cardfile;
CFILE-REPT-ERR end

The third stage, stage c, deals with the side-effects of partial exec
ution of the first part of the selection. In this trivial example, the

only significant side-effect is the reading of cardfile. In general, it
will be found that the only troublesome side-effects are the reading and

writing of serial files; the best and easiest way to handle them is to

equip ourselves with input and output procedures capable of 'noting' and

'restoring' the state of the file and its associated buffers. Given the

availability of such procedures, stage c can be completed by inserting a

'note' statement immediately following the 'posit' statement and a 're

store' statement immediately following the 'admit'. Sometimes side-ef

fects will demand a more ad hoc treatment: when 'note' and 'restore' are

unavailable there is no alternative to such cumbersome expedients as

explicitly storing each record on disk or in main storage.

www.manaraa.com

463

Comment

By breaking our treatment of the backtracking difficulty into three dis
tinct stages, we are able to isolate distinct aspects of the problem.
In stage a we ignore the backtracking difficulty entirely, and concen
trate our efforts on obtaining a correct solution to the reduced problem.
This solution is carried through the three main design steps, producing
a completely specific program text: we are able to satisfy ourselves of
the correctness of that text before going on to modify it in the second
and third stages. In the second stage we deal only with the recognition
difficulty: the difficulty is one of logic flow, and we handle it, ap
propriately, by modifying the logic flow of the program with quit state
ments. Each quit statement says, in effect, 'It is supposed (posited)
that this is a goodgroup; but if, in fact, this card is not what it ought
to be then this is not, after all, a goodgroup'. The required quit
statements can be easily seen from the data structure definition, and

their place is readily found in the program text because the program

structure perfectly matches the data structure. The side-effects arise
to be dealt with in stage 3 because of the quit statements inserted in

stage b: the quit statements are truly 'go to' statements, producing
discontinuities in the context of the computation and hence side-effects.
The side-effects are readily identified from the program text resulting

from stage b.

Note that it would be quite wrong to distort the data structures and the
program structure in an attempt to avoid the dreaded four-letter word
'goto'. The data structures shown, and hence the program structure, are
self-evidently the correct structures for the problem as stated: they
must not be abandoned because of difficulties with the logic flow.

3. Simple Programs and Complex Programs

The design method, as described above, is severely constrained: it ap
plies to a narrow class of serial file-processing programs. We may go
further, and say that it defines such a class - the class of 'simple pro
grams'. A 'simple program' has the following attributes:-

The program has a fixed initial state; nothing is remembered

from·one execution to the next.

Program inputs and outputs are serial files, which we may con

veniently suppose to be held on magnetic tapes. There may be

more than one input and more than one output file.

Associated with the program is an explicit definition of the

structure of each input and output file. These structures are

tree structures, defined in the grammar used above. This gram
mar permits recursion in addition to the features shown above;
it is not very different from a grammar of regular expressions.

www.manaraa.com

464

The input data structures define the domain of the program, the
output data structures its range. Nothing is introduced into
the program text which is not associated with the defined data
structures.

The data structures are compatible, in the sense that they can
be combined into a program structure in the manner shown above.

The program structure thus derived from the data structures is

sufficient for a workable program. Elementary operations of
the program language (possibly supplemented by more powerful
or suitable operations resulting from bottom-up design) are al
located to components of the program structure without intro
ducing any further 'program logic'.

A simple program may be designed and constructed with the minimum of dif

ficulty, provided that we adhere rigorously to the design principles ad
umbrated here and eschew any temptation to pursue efficiency at the cost
of distorting the structure. In fact, we should usually discount the

benefits of efficiency, reminding ourselves of the mass of error-ridden

programs which attest to its dangers.

Evidently, not all programs are simple programs. Sometimes we are pre
sented with the task of constructing a program which operates on direct
access rather than on serial files, or which processes a single record
at each execution, starting f~ a varying internal state. As we shall
see later, a simple program may be cl~hed in various disguises which
give it a misleading appearance without affecting its underlying nature.
More significantly, we may find that the design procedure suggested can
not be applied to the problem given because the data structures are not
compatible: that is, we are unable at the second step of the design pro
cedure to form the program structure from the data structures.

Example 3

The input cardfile of example 1 is presented to the program in the form

of a blocked file. Each block of this file contains a card count and a
number of card images.

Solution 3

The structure of blockedfile is:

BLOCKEDFILE

www.manaraa.com

465

This structure does not, of course, show the arrangement of the cards in

groups. It is impossible to show, in a single structure, both the arran

gement in groups and the arrangement in blocks. But the structure of the

report is still:

We cannot fit together the structures of report and blockedfile to form

a program structure; nor would we be in better case if we were to ignore

the arrangement in blocks. The essence of our difficulty is this: the

program must contain operations to be executed once per block, and these

must be allocated to a 'process block' component; it must also contain
operations to be executed once per group, and these must be allocated to
a 'process group' component; but it is impossible to form a single pro
gram structure containing both a 'process block' and a 'process group'
component. We will call this difficulty a 'structure clash'.

The solution to the structure clash in the present example is obvious:

more so because of the order in which the examples have been taken and

because everyone knows about blocking and deblocking. But the solution

can be derived more formally from the data structures. The clash is of

a type we will call 'boundary clash': the boundaries of the blocks are

not synchronised with the boundaries of the groups. The standard solut

ion for a structure clash is to abandon the attempt to form a single

program structure and instead decompose the problem into two or more

simple programs. For a boundary clash the required decomposition is al

ways of the form:

REPORT

The intermediate file, file X, must be composed of records each of which

is a cardimage, because cardimage is the highest common factor of the

structures blockedfile and cardfile. The program PB is the program pro
duced as a solution to example 1; the program PA is:

PA sequence

open blockedfile; open fileX; read blockedfile;

PABODY iteration until blockedfile.eof

cardpointer := 1;

www.manaraa.com

466

PBLOCK iteration until cardpointer > block.cardcount
write cardimage (cardpointer);

cardpointer := cardpointer + 1;

PBLOCK end

read blockedfile;

PABODY end

close fileX; close blockedfile;

PA end

The program PB sees file X as having the structure of cardfile in example

I, while program PA sees its structure as:

comment

The decomposition into two simple programs achieves a perfect solution.
Only the program PA is cognisant of the arrangement of card images in
blocks; only the program PB of their arrangement in groups. The tape
containing file X acts as a cordon sanitaire between the two, ensuring

that no undesired interactions can occur: we need not concern ourselves

at all with such questions as 'what if the header record of a group is
the first cardimage in a block with only one cardimage?', or 'what if a

group has no detail records and its header is the last cardimage in a
block?' in this respect our design is known to be correct.

There is an obvious inefficiency in our solution. By introducing the in

termediate magnetic tape file we have, to a first approximation, doubled

the elapsed time for program execution and increased the program's deman

for backing store devices.

Example 4

The input cardfile of example 1 is incompletely sorted. The cards are

partially ordered so that the header card of each group precedes any de
tail cards of that group, but no other ordering is imposed. The report
has no title, and the totals may be produced in any order.

solution 4

The best we can do for the structure of cardfile is:

www.manaraa.com

467

which is clearly incompatible with the structure of the report, since

there is no component of cardfile corresponding to totalline in the re
port. Once again we have a structure clash, but this time of a differ
ent type. The cardfile consists of a number of groupfiles, each one of

which has the form:

The cardfile is an arbitrary interleaving of these groupfiles. To re
solve the clash (an 'interleaving clash') we must resolve cardfile into
its constituent groupfiles:

Allowing, for purposes of exposition, that a single report may be pro
duced by the n programs PGI, ••• PGn (each contributing one totalline),
we have decomposed the problem into n+l simple programsr of these, n are
identical programs processing the n distinct groupfiles groupfilel, •••
groupfilen; while the other, PC, resolves cardfile into its constituents.

Two possible versions of PC are:

PCl sequence
open cardfile; read cardfile;
open all possible groupfiles;

PClBODY iteration until cardfile.eof

and

write record to groupfile (record.key);

read cardfile;

PClBODY end
close all possible groupfiles;

close cardfile;

PCl end

PC2 sequence
open cardfile; read cardfile;

www.manaraa.com

468

PC2BODY iteration until cardfile.eof

REC-INIT select new groupfile
open groupfile (record.key)/

REC-INIT end
write record to groupfile (record.key)/
read cardfile/

PC2BODY end
close all opened groupfiles/
close cardfile;

PC2 end

Both PCI and PC2 present difficulties. In PCI we must provide a group
file for every possible key value, whether or not cardfile contains rec
ords for that key. Also, the programs PGI, ••• PGn must be elaborated
to handle the null groupfile:

In PC2 we must provide a means of determining whether a groupfile already
exists for a given key value. Note that it would be quite wrong to base
the determination on the fact that a header must be the first record for
a group: such a solution takes impermissible advantage of the structure
of groupfile which, in principle, is unknown in the program PC; we would
then have to make a drastic change to PC if, for example, the header card
were made optional:

Further, in PC2 we must be able to run through all the actual key values
in order to close all the groupfiles actually opened. This would still

be necessary even if each group had a recognisable trailer record, for
reasons similar to' those given above concerning the header records.

www.manaraa.com

469

Comment

The inefficiency of our solution to example 4 far outstrips the ineffici

ency of our solution to example 3. Indeed, our solution to example 4 is
entirely impractical. Practical implementation of the designs will be
considered below in the next section. For the moment, we may observe
that the use of magnetic tapes for communication between simple programs
enforces a very healthy discipline. We are led to use a very simple pro

tocol: every serial file must be opened and closed. The physical medium

encourages a complete decoupling of the programs: it is easy to imagine

one program being run today, the tapes held overnight in a library, and

a subsequent program being run tomorrow; the whole of the communication

is visible in the defined structure of the files. Finally, we are stren

gthened in our resolve to think in terms of static structures, avoiding

the notoriously error-prone activity of thinking about dynamic flow and

execution-time events.

Taking a more global view of the design procedure, we may say that the

simple program is a satisfactory high level component. It is a larger

object than a sequence, iteration or selection; it has a more precise
definition than a module; it is subject to restrictions which reveal to

us clearly when we are trying to make a single program out of what should

be two or more.

4. Programs, Procedures and Processes

Although from the design point of view we regard magnetic tapes as the

canonical medium of communication between simple programs, they will not

usually provide a practical implementation.

An obvious possibility for implementation in some environments is to re
place each magnetic tape by a limited number of buffers in main storage,

with a suitable regime for ensuring that the consumer program does not

run ahead of the producer. Each simple program can then be treated as a

distinct task or process, using whatever facilities are provided for the

management of multiple concurrent tasks.

However, something more like coroutines seems more attractive (2). The

standard procedure call mechanism offers a simple implementation of great

flexibility and power. Consider the program PA, in our solution to exam

ple 3, which writes the intermediate file X. We can readily convert this

program into a procedure PAX which has the characteristics of an input

procedure for file X. That is, invocations of the procedure PAX will

satisfactorily implement the operations 'open file X for reading', 'read

file X' and 'close file X after reading'.

We will call this conversion of PA into PAX 'inversion of PA with respect
to file X'. (Note that the situation in solution 3 is symmetrical: we
could equally well decide to invert PB with respect to file X, obtaining

www.manaraa.com

470

an output procedure for file X.) The mechanics of inversion are a mere
matter of generating the appropriate object coding from the text of the
simple program: there is no need for any modification to that text. PA
and PAX are the same program, not two different programs. Most practiS
ing programmers seem to be unaware of this identity of PA and PAX, and
even those who are familiar with coroutines often program as if they sup

posed that PA and PAX were distinct things. This is partly due to the
baleful influence of the stack as a storage allocation device: we cannot

jump out of an inner block of PAX, return to the invoking procedure, and

subsequently resume where we left off when we are next invoked. So we

must either modify our compiler or modify our coding style, adopting the

use of labels and go to statements as a standard in place of the now

conventional compound statement of structured programming. It is Common

to find PAX, or an analogous program, designed as a selection or case

statement: the mistake is on all fours with that of the kindergarten

child who has been led to believe that the question 'what is 5 multiplie~
by 3?' is quite different from the question 'what is 3 multiplied by 5?'.
At a stroke the poor child has doubled the difficulty of learning the
multiplication tables.

The procedure PAX is, of course, a variable state procedure. The value
of its state is held in a 'state vector' (or activation record), of whicl

a vital part is the text pointer; the values of special significance are
those associated with the suspension of PAX for operations on file X -

open, write and close. The state vector is an 'own variable' par excel
lence, and should be clearly seen as such.

The minimum interface needed between PB and PAX is two parameters: a rec

ord of file X, and an additional bit to indicate whether the record is 0

is not the eof marker. This minimum interface suffices for example 3:

there is no need for PE to pass an operation code to PAX (open read or

close). It is important to understand that this minimum interface will

not suffice for the general case. It is sufficient for example 3 only

because the operation code is implicit in the ordering of operations.

From the point of view of PAX, the first invocation must be 'open', and

subsequent invocations must be 'read' until PAX has returned the eof mar

ker to PB, after which the final invocation must be 'close'. This feli

citous harmony is destroyed if, for example, PB is permitted to stop

reading and close file X before reaching the eof marker. In such a case
the interface must be elaborated with an operation code. Worse, the seq
uence of values of this operation code now constitutes a file in its own
right: the solution becomes:

www.manaraa.com

471

REPORT

The design of PA is, potentially, considerably more complicated. The

benefit we will obtain from treating this complication conscientiously is

well worth the price: by making explicit the structure of the opcode file

we define the problem exactly and simplify its solution. Failure to re

cognise the existence of the opcode file, or, just as culpable, failure

to make its structure explicit, lies at the root of the errors and ob

scurities for which manufacturers' input-output software is deservedly

infamous.

In solution 4 we created an intolerable multiplicity of files - group

filel, ••. groupfilen. We can rid ourselves of these by inverting the

programs PGI, .•. PGn with respect to their respective groupfiles: that

is, we convert each of the programs PGi to an output procedure PGFi,
which can be invoked by PC to execute operations on groupfilei. But we
still have an intolerable multiplicity of output procedures, so a fur

ther step is required. The procedures are identical except for their
names and the current values of their state vectors. So we separate out

the pure procedure part - PGF - of which we need keep only one copy, and

the named state vectors SVPGFI, .•• SVPGFn. We must now provide a mech

anism for storing and retrieving these state vectors and for associating

the appropriate state vector with each invocation of PGF; many mechanisms
are possible, from a fully-fledged direct-access file with serial read

facilities to a simple arrangement of the state vectors in an array in

main storage.

5. Design and Implementation

The model of a simple program and the decomposition of a problem into

simple programs provides some unity of viewpOint. In particular, we may

be able to see what is common to programs with widely different implemen

tations. Some illustrations follow.

a A conversational program of the form:

l-_....::.tCONVERSATION I----,;~
PROGRAM

The user provides a serial input file of messages, ordered in
time; the conversation program produces a serial file of res
ponses. Inversion of the program with respect to the user in-

www.manaraa.com

472

put file gives an output procedure 'dispose of one message in
a conversation'. The state vector of the inverted program
must be preserved for the duration of the conversation: IBM's
IMS provides the SPA (Scratchpad Area) for precisely this pur
pose. The conversation program must, of course, be designed
and written as a single program: implementation restrictions

may dictate segmentation of the object code.

b A 'sort-exit' allows the user of a generalised sorting program

to introduce his own procedure at the point where each record

is about to be written to the final output file. An interface

is provided which permits 'insertion' and 'deletion' of rec

ords as well as 'updating'.

We should view the sort-exit procedure as a simple program:

SORT-EXIT
PROCEDURE

To fit it in with the sorting program we must invert it with
respect to both the sortedfile and the finaloutput. The in
terface must provide an implementation of the basic operat
ions: open sortedfile for reading; read sortedfile (distin
guishing the eof marker); close sortedfile after reading; open
finaloutput for writing; write finaloutput record; close final

output file after writing (including writing the eof marker).

Such concepts as 'insertion' and 'deletion' of records are

pointless: at best, they serve the cause of efficiency, trad
ucing clarity; at worst, they create difficulty and confusion
where none need exist.

c OUr solution to example 1 can be seen as an optimisation of
the solution to the more general example 4. By sorting the

cardfile we ensure that the groups do not overlap in time: the

state vectors of the inverted programs PGFl, ••• PGFn can
therefore share a single area in main storage. The state vec
tor consists only of the variable total; the variable groupkey
is the name of the currently active group and hence of the
current state vector. Because the records of a group are con
tiguous, the end of a group is recognisable at cardfile.eof or
at the start of another group. The individual groupfile may
therefore be closed, and the totalline written, at the earli
est possible moment.

We may, perhaps, generalise so far as to say that an identifi
er is stored by a program only in order to give a unique name
to the state vector of some process.

www.manaraa.com

473

d A data processing system may be viewed as consisting of many
simple programs, one for each independent entity in the real
world model. By arranging the entities in sets we arrange the
corresponding simple programs in equivalence classes. The
'master record' corresponding to an entity is the state vector

of the simple program modelling that entity.

The serial files of the system are files of transactions or
dered in time: some are primary transactions, communicating
with the real world, some are secondary, passing between sim

ple programs of the system. In general, the real world must
be modelled as a network of entities or of entity setsl the
data processing system is therefore a network of simple pro
grams and transaction files.

Implementation of the system demands decisions in two major
areas. First a scheduling algorithm must be decidedl second,
the representation and handling of state vectors. The extreme
cases of the first are 'real-time' and 'serial batch'. In a
pure 'real-time' system every primary transaction is dealt
with as soon as it arrives, followed immediately by all of the
secondary and consequent transactions, until the system as a
whole becomes quiet. In a pure 'serial batch' system, each
class (identifier set) of primary transactions is accumulated

for a period (usually a day, week or month). Each simple pro
gram of that class is then activated (if there is a transaction
present for it), giving rise to secondary transactions of var
ious classes. These are then treated similarly, and so on un
til no more transactions remain to be processed.

Choosing a good implementation for a data processing system is

difficult, because the network is usually large and many pos
sible choices present themselves. This difficulty is compoun
ded by the long-term nature of the simple programs: a typical
entity, and hence a typical program, has a lifetime measured
in years or even decades. During such a lifetime the system
will inevitably undergo change: in effect, the programs are
being rewritten while they are in course of execution.

e An interrupt handler is a program which processes a serial
file of interrupts, ordered in time:

Inversion of the interrupt handler with respect to the inter
rupt file gives the required procedure 'dispose of one inter
rupt'. In general, the interrupt file will be composed of in-

www.manaraa.com

474

terleaved files for individual processes, devices, etc. Im

plementation is further complicated by the special nature of
the invocation mechanism, by the fact that the records of the
interrupt file are distributed in main storage, special regis
ters and other places, and by the essentially recursive struc
ture of the mdin interrupt file (unless the interrupt handler
is permitted to mask off secondary interrupts).

f An input-output procedure (what IBM literature calls an 'access
method') is a simple program which processes an input file of
access requests and produces an output file of access responses.
An access request consists of an operation code and, sometimes,
a data recordi an access response consists of a result code and,
sometimes, a data record. For example, a direct-access method
has the form:

By inverting this simple program with respect to both the file
of access requests and the file of access responses we obtain
the desired procedure. This double inversion is always possi
ble without difficulty, because each request must produce a re
sponse and that response must be calculable before the next re
quest is presented.

The chief crime of access method designers is to conceal from
their customers (and, doubtless, from themselves) the structure
of the file of access requests. The user of the method is thus
unable to determine what sequences of operations are permitted
by the access method, and what their effect will be.

9 Some aspects of a context-sensitive grammar may be regarded as
interleaved context-free grammars. For example, in a grossly
simplified version of the COBOL language we may wish to stipu
late that any variable may appear as an operand of a MOVE state
ment, while only a variable declared as numeric may appear as
an operand of an arithmetic (ADD, SUBTRACT, MULTIPLY or DIVIDE)
statement. We may represent this stipulation as follows:

www.manaraa.com

475

The syntax-checking part of the compiler consists, partly, of

a simple program for each declared variable. The symbol table

is the set of state vectors for these simple programs. The al

gorithm for activating and suspending these and other programs

will determine the way in which one error interacts with another
both for diagnosis and correction.

6. A Modest Proposal

It is one thing to propose a model to illuminate what has already been
done, to clarify the sources of existing success or failure. It is
quite another to show that the model is of practical value, and that it
leads to the construction of acceptable programs. An excessive zeal in
decomposition produces cumbersome interfaces and pOintlessly redundant
code. The "Shanley Principle" in civil engineering (3) requires that
several functions be implemented in a single part, this is necessary for
economy both in manufacturing and in operating the products of engineer
ing design. It appears that a design approach which depends on decom
position runs counter to this principle: its main impetus is the separ
ation of functions for implementation in distinct parts of the program.

But programs do not have the intractable nature of the physical objects

which civil, mechanical or electrical engineers produce. They can be

manipulated and transformed (for example, by compilers) in ways which

preserve their vital qualities of correctness and modifiability while

improving their efficiency both generally and in the specialised envir

onment of a prticular machine. The extent to which a program can be

manipulated and transformed is critically affected by two factors: the

variety of forms it can take, and the semantic clarity of the text.

programs written using today's conventional techniques score poorly on

both factors. There is a distreSSingly large variety of forms, and in
telligibility is compromised or even destroyed by the introduction of

www.manaraa.com

476

implementation-orientated features. The justification for these tech

niques is, of course, efficiency. But in pursuing efficiency in this

way we become caught in a vicious circle: because our languages are rich
the compilers cannot understand, and hence cannot optimise, our programs
so we need rich languages to allow us to obtain the efficiency which the

compilers do not offer.

Decomposition into simple programs, as discussed above, seems to offer

some hope of separating the considerations of correctness and modifiabi

lity from the considerations of efficiency. Ultimately, the objective

is that the first should become largely trivial and the second largely

automatic.

The fir.stphase of design would produce the following documents:-

a .definition of each serial file structure for each simple pro

gram U,ncLuding files of operation codes!);

the text ,;ofeach simple program;

a stat~ of the communication between simple programs, per

haps in the .f,orm of identities such as

output (Pi' fr) 5 input (Pj' f s)·

It may then be possible to carry out some automatic checking of self

consistency in the design - for instance, to check that the inputs to a
program are within its domain. We may observe, incidentally, that the

'inner' feature of Simula 67 (4) is a way of enforcing consistency of a
file of operation codes between the consumer and producer processes in
a very limited case. More ambitiously, it may be possible, if file-hand
ling protocol is exactly observed, and read and write operations are al
located with a scrupulous regard to prinCiple, to check the correctness
of the simple programs in relation to the defined data structures.

In the second phase of design, the designer would specify, in greater or

lesser detail:-

the synchronisation of the simple programs;

the handling of state vectors;

the dissection and recombining of programs and state vectors to

reduce interface overheads.

Synchronisation is already loosely constrained by the statements of pro

gram communication made in the first phase: the consumer can never run

ahead of the producer. Within this constraint the designer may choose
to impose additional constraints at compile time and/or at execution

time. The weakest local constraint is to provide unlimited dynamic buf

fering at execution time, the consumer being allowed to lag behind the'

producer by anything from a single record to the whole file, depending

on resource allocation elsewhere in the system. The strongest local con-

www.manaraa.com

477

straints are use of coroutines or program inversion (enforcing a single

record lag) and use of a physical magnetic tape (enforcing a whole file
lag).

Dissection and recombining of programs becomes possible with coroutines

or program inversion; its purpose is to reduce interface overheads by

moving code between the invoking and invoked programs, thus avoiding some

of the time and space costs of procedure calls and also, under certain

circumstances, avoiding replication of program structure and hence of

coding for sequencing control. It depends on being able to associate

code in one program with code in another through the medium of the com

municating data structure.

A trivial illustration is provided by solution 3, in which we chose to

invert PA with respect to file X, giving an input procedure PAX for

the file of cardimages. We may decide that the procedure call overhead

is intolerable, and that we wish to dissect PAX and combine it with PB.

This is achieved by taking the invocations of PAX in PB (that is, the
statements 'open fileX', 'read fileX' and 'close fileX') and replacing

those invocations by the code which PAX would execute in response to

them. For example, in response to 'open fileX', PAX would execute the

code 'open blockedfile'; therefore the 'open fileX' statement in PB can
be replaced by the statement 'open blockedfile'.

A more substantial illustration is provided by the common practice of

designers of 'real-time' data processing systems. Suppose that a prim

ary transaction for a product gives rise to a secondary transaction for

each open order item for that product, and that each of those in turn

gives rise to a transaction for the open order of which it is a part,

which then gives rise to a transaction for the customer who placed the
order. Instead of having separate simple programs for the product, or

der item, order and customer, the designer will usually specify a 'tran

saction processing module': this consists of coding from each of those

simple programs, the coding being that required to handle the relevant

primary or secondary transaction.

Some interesting program transformations of a possibly relevant kind are

discussed in a paper by Burstall and Darlington (5). I cannot end this

pape~ better than by quoting from them:

"The overall aim of our investigation has been to help people to

write correct programs which are easy to alter. To produce such

programs it seems advisable to adopt a lucid, mathematical and

abstract programming style. If one takes this really seriously,

attempting to free one's mind from considerations of computational

efficiency, there may be a heavy penalty in program running time;

in practice it is often necessary to adopt a more intricate ver
sion of the program, sacrificing comprehensibility for speed.

www.manaraa.com

478

The question then arises as to how a lucid program can be trans
formed into a more intricate but efficient one in a systematic
way, or indeed in a way which could be mechanised.

We are interested in starting with programs having an ex

tremely simple structure and only later introducing the complic

ations which we usually take for granted even in high level lang

uage programs. These complications arise by introducing useful

interactions between what were originally separate parts of the

program, benefiting by what might be called 'economies of inter

action' ."

References

(1) Principles of Program Design, M A Jackson, Academic Press 1975.

(2) Hierarchical Program Structures, O-J Dahl, in Structured Program
ming, Academic Press 1972.

(3) structured Programming with S£ to Statements, Donald E Knuth, in
ACM Computing Surveys Vol 6 No 4 December 1974.

(4) A Structural Approach to Protection, CAR Hoare, 1975.

(5) Some Transformations for Developing Recursive Programs, R M Burstall

& John Darlington, in Proceedings of 1975 Conference on Reliable
Software, Sigp1an Notices Vol 10 No 6 June 1975.

www.manaraa.com

David L. Parnas

On the Criteria to Be Used in Decomposing Systems
into Modules

Communications of the ACM, Vol. 15 (12),1972
pp. 1053-1058

www.manaraa.com

On the Criteria To Be
U sed in Decomposing
Systems into Modules
D.L. Pamas
Camegie-Mellon University

This paper discusses modularization as a mechanism
for improving the flexibility and comprehensibility of a
system while allowing the shortening of its development
time. The effectiveness of a "modularization" is
dependent upon the criteria used in dividing the system
into modules. A system design problem is presented and
both a conventional and unconventional decomposition
are described. It is shown that the unconventional
decompositions have distinct advantages for the goals
outlined. The criteria used in arriving at the decom
positions are discussed. The unconventional decomposi
tion, if implemented with the conventional assumption
that a module consists of one or more subroutines, will

Copyright © 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit. all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com
puting Machinery.

Author's address: Department of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 15213.

www.manaraa.com

482

be less efficient in most cases. An alternative approach
to implementation which does not have this effect is
sketched.

Key Words and Phrases: software, modules,
modularity, software engineering, KWIC index,
software design

CR Categories: 4.0

Introduction

A lucid statement of the philosophy of modular
programming can be found in a 1970 textbook on the
design of system programs by Gouthier and Pont [1,
~10.23], which we quote below: l

A well-defined segmentation of the project effort ensures
system modularity. Each task forms a separate, distinct program
module. At implementation time each module and its inputs and
outputs are well-defined, there is no confusion in the intended
interface with other system modules. At checkout time the in
tegrity of the module is tested independently; there are few sche
duling problems in synchronizing the completion of several tasks
before checkout can begin. Finally, the system is maintained in
modular fashion; system errors and deficiencies can be traced to
specific system modules, thus limiting the scope of detailed error
searching.

Usually nothing is said about the criteria to be used
in dividing the system into modules. This paper will
discuss that issue and, by means of examples, suggest
some criteria which can be used in decomposing a
system into modules.

1 Reprinted by permission of Prentice-Hall, Englewood
Cliffs, NJ.

www.manaraa.com

483

A Brief Status Report

The major advancement in the area of modular
programming has been the development of coding
techniques and assemblers which (1) allow one module
to be written with little knowledge of the code in
another module, and (2) allow modules to be reas
sembled and replaced without reassembly of the whole
system. This facility is extremely valuable for the
production of large pieces of code, but the systems most
often used as examples of problem systems are highly
modularized programs and make use of the techniques
mentioned above.

Expected Benefits of Modular Programming

The benefits expected of modular programming are:
(1) managerial-development time should be shortened
because separate groups would work on each module
with little need for communication: (2) product flexi
bility-it should be possible to make drastic changes to
one module without a need to change others; (3) com
prehensibility-it should be possible to study the
system one module at a time. The whole system can
therefore be better designed because it is better under
stood.

What Is Modularization?

Below are several partial system descriptions called
modularizations. In this context "module" is considered
to be a responsibility assignment rather than a sub-

www.manaraa.com

484

program. The modularizations include the design deci
sions which must be made before the work on inde
pendent modules can begin. Quite different decisions
are included for each alternative, but in all cases the
intention is to describe all "system level" decisions (i.e.
decisions which affect more than one module).

Example System 1: A KWIC Index Production 'System

The following description of a KWIC index will
suffice fOT this paper. The KWIC index system accepts an
ordered set of lines, each line is an ordered set of words,
and each word is an ordered set of characters. Any line
may be "circularly shifted" by repeatedly removing the
first word and appending it at the end of the line. The
KWIC index system outputs a listing of all circular shifts
of all lines in alphabetical order.

This is a small system. Except under extreme cir
cumstances (huge data base, no supporting software),
such a system could be produced by a good programmer
within a week or two. Consequently, none of the
difficulties motivating modular programming are im
portant for this system. Because it is impractical to
treat a large system thoroughly, we must go through
the exercise of treating this problem as if it were a large
project. We give one modularization which typifies
current approaches, and another which has been used
successfully in undergraduate class projects.
Modularization 1

We see the following modules:
Module 1: Input. This module reads the data lines

from the input medium and stores them in core for

www.manaraa.com

485

processing by the remaining modules. The characters
are packed four to a word, and an otherwise unused
character is used to indicate the end of a word. An index
is kept to show the starting address of each line.

Module 2: Circular Shift. This module is called after
the input module has completed its work. It prepares an
index which gives the address of the first character of
each circular shift, and the original index of the line in
the array made up by module 1. It leaves its output in
core with words in pairs (original line number, starting
address).

Module 3: Alphabetizing. This module takes as
input the arrays produced by modules 1 and 2. It
produces an array in the same format as that produced
by module 2. In this case, however, the circular shifts
are listed in another order (alphabetically).

Module 4: Output. Using the arrays produced by
module 3 and module 1, this module produces a nicely
formatted output listing all of the circular shifts. In a
sophisticated system the actual start of each line will
be marked, pointers to further information may be
inserted, and the start of the circular shift may actually
not be the first word in the line, etc.

Module 5: Master Control. This module does little
more than control the sequencing among the other four
modules. It may also handle error messages, space
allocation, etc.

It should be clear that the above does not constitute
a definitive document. Much more information would
have to be supplied before work could start. The defin
ing documents would include a number of pictures
showing core formats, pointer conventions, calling

www.manaraa.com

486

conventions, etc. All of the interfaces between the four
modules must be specified before work could begin.

This is a modularization in the sense meant by all
proponents of modular programming. The system is
divided into a number of modules with well-defined
interfaces; each one is small enough and simple enough
to be thoroughly understood and well programmed.
Experiments on a small scale indicate that this is
approximately the decomposition which would be
proposed by most programmers for the task specified.

Modularization 2
We see the following modules:
Module 1: Line Storage. This module consists of a

number of functions or subroutines which provide the
means by which the user of the module may call on it.
The function call CHAR(r,w,c) win have as value an
integer representing the cth character in the rth line,
wth word. A call such as SETCHAR(r, w,c,d) will cause
the cth character in the wth word of the rth line to be
the character represented by d (Le. CHAR(r,w,c) = d).
WORDS(r) returns as value the number of words in
line r. There are certain restrictions in the way that these
routines may be called; if these restrictions are violated
the routines "trap" to an error-handling subroutine
which is to be provided by the users of the routine.
Additional routines are available which reveal to the
caller the number of words in any line, the number of
lines currently stored, and the number of characters in
any word. Functions DELINE and DELWRD are
provided to delete portions of lines which have already
been stored. A precise specification of a similar module

www.manaraa.com

487

has been given in [3] and [8] and we will not repeat it
here.

Module 2: INPUT. This module reads the original
lines from the input media and calls the line storage
module to have them stored internally.

Module 3: Circular Shifter. The principal functions
provided by this module are analogs of functions pro
vided in module 1. The module creates the impres
sion that we have created a line holder containing
not all of the lines but all of the circular shifts of the
lines. Thus the function call CSCHAR(l,w,c) provides
the value representing the cth character in the wth
word of the lth circular shift. It is specified that (1)
if i < j then the shifts of line i precede the shifts of line
j, and (2) for each line the first shift is the original
line, the second shift is obtained by making a one-word
rotation to the first shift, etc. A function CSSEI'UP is
provided which must be called before the other functions
have their specified values. For a more precise specifica
tion of such a module see [8J.

Module 4: Alphabetizer. This module consists
principally of two functions. One, ALP H, must be
called before the other will have a defined value. The
second, IT H, will serve as an index. IT H(i) will give the
index of the circular shift which comes ith in the
alphabetical ordering. Formal definitions of these
functions are given [8].

Module 5: Output. This module will give the desired
printing of set of lines or circular shifts.

Module 6: Master Control. Similar in function to the
modularization above.

www.manaraa.com

488

Comparison of the Two Modularizations
General. Both schemes will work. The first is quite

conventional; the second has been used successfully in
a class project [7]. Both will reduce the programming to
the relatively independent programming of a number of
small, manageable, programs.

Note first that the two decompositions may share
all data representations and access methods. Our
discussion is about two different ways of cutting up
what may be the same object. A system built according
to decomposition I could conceivably be identical
after assembly to one built according to decomposition
2. The differences between the two alternatives are in
the way that they are divided into the work assignments,
and the interfaces between modules. The algorithms
used in both cases might be identical. The systems are
substantially different even if identical in the runnable
representation. This is possible because the runnable
representation need only be used for running; other
representations are used for changing, documenting,
understanding, etc. The two systems will not be identical
in those other representations.

Changeability. There are a number of design de
cisions which are questionable and likely to change
under many circumstances. This is a partial list.

1. Input format.
2. The decision to have all lines stored in core. For
large jobs it may prove inconvenient or impractical to
keep all of the lines in core at anyone time.
3. The decision to pack the characters four to a word.
In cases where we are working with small amounts of
data it may prove undesirable to pack the characters;

www.manaraa.com

489

time will be saved by a character per word layout. In
other cases we may pack, but in different formats.
4. The decision to make an index for the circular
shifts rather that actually store them as such. Again, for
a small index or a large core, writing them out may be
the preferable approach. Alternatively, we may choose
to prepare nothing during CSSETUP. All computation
could be done during the calls on the other functions
such as CSCHAR.
5. The decision to alphabetize the list once, rather
than either (a) search for each item when needed, or
(b) partially alphabetize as is done in Hoare's FIND

[2]. In a number of circumstances it would be advan
tageous to distribute the computation involved in
alphabetization over the time required to produce the
index.

By looking at these changes we can see the differences
between the two modularizations. The first change is
confined to one module in both decompositions. For the
first decomposition the second change would result in
changes in every module! The same is true of the third
change. In the first decomposition the format of the
line storage in core must be used by all of the programs.
In the second decomposition the story is entirely
different. Knowledge of the exact way that the lines are
stored is entirely hidden from all but module I. Any
change in the manner of storage can be confined to that
module!

In some versions of this system there was an addi
tional module in the decomposition. A symbol table
module (as specified in [3]) was used within the line
storage module. This fact was completely invisible to
the rest of the system.

www.manaraa.com

490

The fourth change is confined to the circular shift
module in the second decomposition, but in the first
decomposition the alphabetizer and the output routines
will also know of the change.

The fifth change will also prove difficult in the first
decomposition. The output module will expect the index
to have been completed before it began. The alpha
betizer module in the second decomposition was
designed so that a user could not detect when the
alphabetization was actually done. No other module
need be changed.

Independent Development. In the first modularization
the interfaces between the modules are the fairly com
plex formats and table organizations described above.
These represent design decisions which cannot be taken
lightly. The table structure and organization are es
sential to the efficiency of the various modules and must
be designed carefully. The development of those formats
will be a major part of the module development and
that part must be a joint effort among the several
development groups. In the second modularization the
interfaces are more abstract; they consist primarily in
the function names and the numbers and types of the
parameters. These are relatively simple decisions and
the independent development of modules should
begin much earlier.

Comprehensibility. To understand the output module
in the first modularization, it will be necessary to
understand something of the alphabetizer, the circular
shifter, and the input module. There will be aspects of
the tables used by output which will only make sense
because of the way that the other modules work. There
will be constraints on the structure of the tables due to

www.manaraa.com

491

the algorithms used in the other modules. The system
will only be comprehensible as a whole. It is my sub
jective judgment that this is not true in the second
modularization.

The Criteria
Many readers will now see what criteria were used

in each decomposition. In the first decomposition the
criterion used was to make each major step in the
processing a module. One might say that to get the first
decomposition one makes a flowchart. This is the most
common approach to decomposition or modulariza
tion. It is an outgrowth of all programmer training
which teaches us that we should begin with a rough
flowchart and move from there to a detailed imple
mentation. The flowchart was a useful abstraction for
systems with on the order of 5,000-10,000 instructions,
but as we move beyond that it does not appear to ~
sufficient; something additional is needed.

The second decomposition was made using "in
formation hiding" [4] as a criterion. The modules no
longer correspond to steps in the processmg. The line
storage module, for example, is used in almost every
action by the system. Alphabetization mayor may not
correspond to a phase in the processing according to
the method used. Similarly, circular shift might, in some
circumstances, not make any table at all but calculate
each character as demanded. Every module in the
second decomposition is characterized by its knowledge
of a design decision which it hides from all others. Its
interface or definition was chosen to reveal as little as
possible about its inner workings.

www.manaraa.com

492

Improvement in Circular Shift Module
To illustrate the impact of such a criterion let us

take a closer look at the design of the circular shift
module from the second decomposition. Hindsight now
suggests that this definition reveals more information
than necessary. While we carefully hid the method
of storing or calculating the list of circular shifts, we
specified an order to that list. Programs could be effec
tively written if we specified only (1) that the lines
indicated in circular shift's current definition will all
exist in the table, (2) that no one of them would be
included twice, and (3) that an additional function
existed which would allow us to identify the original
line given the shift. By prescribing the order for the
shifts we have given more information than necessary
and so unnecessarily restricted the class of systems that
we can build without changing the definitions. For
example, we have not allowed for a system in which the
circular shifts were produced in alphabetical order,
ALP H is empty, and ITH simply returns its argument
as a value. Our failure to do this in constructing the
systems with the second decomposition must clearly be
classified as a design error.

In addition to the general criteria that each module
hides some design decision from the rest of the system,
we can mention some specific examples of decom
positions which seem advisable.

1. A data structureJ its internal lin kings, accessing
procedures and modifying procedures are part of a
single module. They are not shared by many modules as
is conventionally done. This notion is perhaps just an
elaboration of the assumptions behind the papers of

www.manaraa.com

493

Balzer [9] and Mealy [10]. Design with this in mind is
clearly behind the design of BLISS [11].
2. The sequence of instructions necessary to call a given
routine and the routine itself are part of the same module.
This rule was not relevant in the Fortran systems used
for experimentation but it becomes essential for systems
constructed in an assembly language. There are no
perfect general calling sequences for real machines and
consequently they tend to vary as we continue our
search for the ideal sequence. By assigning responsibility
for generating the call to the person responsible for the
routine we make such improvements easier and also
make it more feasible to have several distinct sequences
in the same software structure.
3. The formats of control blocks used in queues in
operating systems and similar programs must be hidden
within a "control block module." It is conventional to
make such formats the interfaces between various
modules. Because design evolution forces frequent
changes on control block formats such a decision often
proves extremely costly.
4. Character codes, alphabetic orderings, and similar
data should be hidden in a module for greatest flexibility.
5. The sequence in which certain items will be proc
essed should (as far as practical) be hidden within a
single module. Various changes ranging from equip
ment additions to unavailability of certain resources in
an operating system make sequencing extremely vari
able.

Efficiency and Implementation
If we are not careful the second decomposition will

prove to be much less efficient than the first. If each of

www.manaraa.com

494

the functions is actually implemented as a procedure
with an elaborate calling sequence there will be a great
deal of such calling due to the repeated switching
between modules. The first decomposition will not
suffer from this problem because there is relatively in
frequent transfer of control between modules.

To save the procedure call overhead, yet gain the
advantages that we have seen above, we must implement
these modules in an unusual way. In many cases the
routines will be best inserted into the code by an
assembler; in other cases, highly specialized and efficient
transfers would be inserted. To successfully and
efficiently make use of the second type of decomposition
will require a tool by means of which programs may be
written as if the functions were subroutines, but as
sembled by whatever implementation is appropriate. If
such a technique is used, the separation between
modules may not be clear in the final code. For that
reason additional program modification features would
also be useful. In other words, the several representa
tions of the program (which were mentioned earlier)
must be maintained in the machine together with a
program performing mapping between them.

A Decomposition Common to a Compiler and Interpretor
for the Same Language

In an earlier attempt to apply these decomposition
rules to a design project we constructed a translator for
a Markov algorithm expressed in the notation described
in [6]. Although it was not our intention to investigate
the relation between compiling and interpretive trans
lators of a langugage, we discovered that our decom
position was valid for a pure compiler and several

www.manaraa.com

495

varieties of interpretors for the language. Although there
would be deep and substantial differences in the final
running representations of each type of compiler, we
found that the decisions implicit in the early decom
position held for all.

This would not have been true if we had divided
responsibilities along the classical lines for either a
compiler or interpretor (e.g. syntax recognizer, code
generator, run time routines for a compiler). Instead
the decomposition was based upon the hiding of various
decisions as in the example above. Thus register repre
sentation, search algorithm, rule interpretation etc. were
modules and these problems existed in both compiling
and interpretive translators. Not only was the decom
position valid in all cases, but many of the routines
could be used with only slight changes in any sort of
translator.

This example provides additional support for the
statement that the order in time in which processing is
expected to take place should not be used in making
the decomposition into modules. It further provides
evidence that a careful job of decomposition can result
in considerable carryover of work from one project to
another.

A more detailed discussion of this example was
contained in [8].

Hierarchical Structure

We can find a program hierarchy in the sense illus
trated by Dijkstra [5] in the system defined according to
decomposition 2. If a symbol table exists, it functions

www.manaraa.com

496

without any of the other modules, hence it is on level 1.
Line storage is on level I if no symbol table is used or it
is on level 2 otherwise. Input and Circular Shifter re
quire line storage for their functioning. Output and
Alphabetizer will require Circular Shifter, but since
Circular Shifter and line holder are in some sense
compatible, it would be easy to build a parameterized
version of those routines which could be used to
alphabetize or print out either the original lines or the
circular shifts. In the first usage they would not require
Circular Shifter; in the second they would. In other
words, our design has allowed us to have a single
representation for programs which may run at either
of two levels in the hierarchy.

In discussions of system structure it is easy to confuse
the benefits of a good decomposition with those of a
hierarchical structure. We have a hierarchical structure
if a certain relation may be defined between the modules
or programs and that relation is a partial ordering. The
relation we are concerned with is "uses" or "depends
upon." It is better to use a relation between programs
since in many cases one module depends upon only
part of another module (e.g. Circular Shifter depends
only on the output parts of the line holder and not on
the correct working of SITWORD). It is conceivable
that we could obtain the benefits that we have been
discussing without such a partial ordering, e.g. if all
the modules were on the same level. The partial ordering
gives us two additional benefits. First, parts of the
system are benefited (simplified) because they use the
services of lower2 levels. Second, we are able to cut off

2 Here "lower" means "lower numbered."

www.manaraa.com

497

the upper levels and still have a usable and useful
product. For example, the symbol table can be used in
other applications; the line holder could be the basis of
a question answering system. The existence of the
hierarchical structure assures us that we can "prune"
off the upper levels of the tree and start a new tree on
the old trunk. If we had designed a system in which the
"low level" modules made some use of the "high level"
modules, we would not have the hierarchy, we would find
it much harder to remove portions of the system, and
"level" would not have much meaning in the system.

Since it is conceivable that we could have a system
with the type of decomposition shown in version I
(important design decisions in the interfaces) but
retaining a hierarchical structure, we must conclude
that hierarchical structure and "clean" decomposition
are two desirable but independent properties of a
system structure.

Conclusion

We have tried to demonstrate by these examples that
it is almost always incorrect to begin the decomposition
of a system into modules on the basis of a flowchart.
We propose instead that one begins with a list of
difficult design decisions or design decisions which are
likely to change. Each module is then designed to hide
such a decision from the others. Since, in most cases,
design decisions transcend time of execution, modules
will not correspond to steps in the processing. To
achieve an efficient implementation we must abandon
the assumption that a module is one or more sub-

www.manaraa.com

498

routines, and instead allow subroutines and programs
to be assembled collections of code from various
modules.

Received August 1971; revised November 1971

References

1. Gauthier, Richard, and Pont, Stephen. Designing Systems
Programs, (C), Prentice-Hall, Englewood Cliffs, N.J., 1970.
2. Hoare, C. A. R. Proof of a program, FIND. Comm. ACM 14,
1 (Jan. 1971),39-45.
3. Parnas, D. L. A technique for software module specification
with examples. Comm. ACM 15, 5 (May, 1972), 330-336.
4. Parnas, D. L. Information distribution aspects of design
methodology. Tech. Rept., Depart. Computer Science, Carnegie
Mellon U., Pittsburgh, Pa., 1971. Also presented at the IFIP
Congress 1971, Ljubljana, Yugoslavia.
5. Dijkstra, E. W. The structure of "THE" -multiprogramming
system. Comm. ACM 11,5 (May 1968), 341-346.
6. Galler, B., and Pedis, A. J. A View of Programming Languages,
Addison-Wesley, Reading, Mass., 1970.
7. Parnas, D. L. A course on software engineering. Proc. SIGCSE
Technical Symposium, Mar. 1972.
8. Parnas, D. L. On the criteria to be used in decomposing
systems into modules. Tech. Rept., Depart. Computer Science,
Carnegie-Mellon U., Pittsburgh, Pa., 1971.
9. Balzer, R. M. Dataless programming. Proc. AFIPS 1967
FJee, Vol. 31, AFIPS Press, Montvale, N.J., pp. 535-544.
10. Mealy, G. H. Another look at data. Proc. AFIPS 1967 FJee,
Vol. 31, AFIPS Press, Montvale, NJ., pp. 525-534.
11. Wulf, W. A., Russell, D. B., and Habermann, A. N. BLISS,
A language for systems programming. Comm. ACM 14,12 (Dec.
1971), 780-790.

www.manaraa.com

David 1. Parnas
On a 'Buzzword': Hierarchical Structure

Information Processing 74, IPIP Congress 74, North Holland,
1974

pp.336-339

www.manaraa.com

ON A 'BUZZWORD': HIERARCHICAL STRUCTURE

David PARNAS

Technische Hochschule Darmstadt, Fachbereich In!ormatik
Research Group on Operating Systems I

Steubenplatz 12, 61 Darmstadt, West Germany

This paper discusses the use of the term "hierarchically structured" to describe the design of operat
ing systems. Although the various uses of this term are often considered to be closely related. close
examination of the use of the term shows that it has a number of quite different meanings. For example.
one can find two different senses of "hierarchy· in a single operating system [3] and [6]. An under
standing of the different meanings of the term is essential. if a designer wishes to apply recent
work 1n Software Engineering and Design Methodology. This paper attempts to provide such an under
standing.

INTRODUCTION

The phrase "hierarchical structure" has become a
buzzword in the computer field. For many it has ac
quired a connotation so positive that it is akin to
the quality of being a good mother. Others have re
jected it as being an unrealistic restriction on the
system [1]. This paper attempts to give some meaning
to the term by reviewing some of the ways that the
term has been used in various operating systems
(e.g. T.H.E. [3], MULTICS [12], and the RC4000 [8])
and providing some better definitions. Uses of the
term, which had been considered equivalent or close
ly related, are shown to be independant. Discussions
of the advantages and disadvantages of the various
hierarchical restrictions are included.

GENERAL PROPERTIES OF ALL USES OF THE PHRASE
"HIERARCHICAL STRUCTURE"

As discussed earlier [2], the word "structure"
refers to a partial description of a system showing
it as a collection of parts and showing some rela
tions between the parts. We can term such a struc
ture hierarchical, if a relation or predicate on
pairs of the parts (R(a,B)) allows us to define
levels by saying that

www.manaraa.com

502

1. Level 0 is the set of parts a such that there
does not exist a B such that R(a,e), and

2. Level i is the set of parts a such that
a) there exists a e on level i-1 such that

R(a,e) and
b) if R(a,y) then y is on level i-1 or lower.

This is possible with a relation R only if the di
rected graph representing R has no loops.

The above definition is the most precise reasonably
simple definition, which encompasses all uses of
the word in the computer literature. This suggests
that the statement Hour Operating System has a
hierarchical structure" carries no information at
all. Any system can be represented as a hierarchi
cal system with one level and one part; more im
portantly, it is possible to divide !nY system into
parts and contrive a relation such tnat the system
has a hierarchical structure. Before such a state
ment can carry any information at all, the way that
the system is divided into parts and the nature of
the relation must be specified.

The decision to produce a hierarchically structured
system may restrict the class of possible systems,
and may, therefore, introduce disadvantages as well
as the desired advantages. In the remainder of this
paper we shall introduce a variety of definitions
for "hierarchical structure l' , and mention some
advantages and disadvantages of the restriction
imposed by these definitions.

1. THE PROGRAM HIERARCHY

Prof. E.W. Dijkstra in his paper on the T.H.E. system
and in later papers on structured programming [3]
and [4J has demonstrated the value of programming
using layers of abstract machines. We venture the
following definition for this program hierarchy. The
parts of the system are subprograms, which may be
called as if they were procedures.* We assume that

* They may be expanded as ~~ACROS.

www.manaraa.com

503

each such program has a specified purpose (e.g.
FNO :: = find next odd number in sequence or invoke
DONE if there is none). The relation lIuses" may be
defined by USES(Pi,P.)=iff p. calls p. and p. will
be considered incorr~ct-;r p~ does not TUnct10n
properly. J

With the last clause we intend to imply that, our
example, FNO does not lIuse ll DONE in the sense de
fined here. The taS'Kof FNO is to invoke DONE; the
purpose and IIcorrectness" of DOtJE is irrelevant to
FNO. Without excepting such calls, we could not
consider a program to be higher in the hierarchy
than the machine, which it uses. Most machines have
"trap" facil iti es, and invoke software routi nes,
when trap conditions occur.

A program divided into a set ofsubprograrns may be
said to be hierarchically structured, when the re
lation lIuses" defines levels as described above.
The term lIabstract machine" is commonly used,
because the relation between the lower level pro
grams and the higher level programs is analoguous
to the relation between hardware and software.

A few remarks are necessary here. First, we do not
claim that the only good programs are hierarchically
structured programs. Second, we pOint out that the
way that the program is divided into subprograms can
be rather arbitrary. For any program, some decom
positions into subprograms may reveal a hierarchi
cal structure, while other decompositions may show
a graph with loops in it. As demonstrated in the
simple example above, the specification of each
program's purpose is critical!

The purpose of the restriction on program structure
implied by this definition, is twofold. First, the
calling program should be able to ignore the inter
nal workings of the called program; the called pro
gram should make no assumptions about the internal
structure of the calling program. Allowing the
called program to call its user, might make this
more difficult since each would have to be designed

www.manaraa.com

504

to work properly in the situations where it could be
called by the other.

The second purpose might be termed "ease of subset
tingll. When a program has this "program hierarchy",
the lower levels may always be used without the
higher levels, when the higher levels are not ready
or their services are not needed. An example of non
hierarchical systems would be one in which the
IIlm'ler level" scheduling programs made use of the
"high level ll file system for storage of information
about the tasks that it schedules. Assuming that
nothing useful could be done without the scheduler,
no subset of the system that did not include the
file system could exist. The file system (usually a
complex and "buggy" piece of software) could not be
developped using the remainder of the system as a
"'virtual machine".

For those who argue that the hierarchical structur
ing proposed in this section prevents the use of re
cursive programming techniques, we remind them of
the freedom available in choosing a decomposition
into subprograms. If there exists a subset of the
programs, which call each other recursively, we can
view the group as a single program for this analysis
and then consider the remaining structure to see, if
it is hierarchical. In looking for possible subsets
of a system, we must either include or exclude this
group of programs as a single program.

One more remark: please, note that the division of
the program into levels by the above discussed re
lation has no necessary connection with the division
of the programs into modules as discussed in [5].
This is discussed further later (section 6).

2. THE "HABERHANN" HIERARCHY IN THE T.H.E. SYSTEM

The T.H.E. system was also hierarchical in another
sense. In order to make the system relatively insen
sitive to the number of processors and their rela
tive speeds, the system was designed as a set of
"parallel sequential processes". The activities in

www.manaraa.com

505

the system were organized into "processes" such
that the sequence of events within a process was
relatively easy to predict, but the sequencing of
events in different processes were considered un
predictable (the relative speeds of the processes
were considered unknown). Resource allocation was
done in terms of the processes and the processes
exchanged work assignments and information. In
carrying out a task, a process could assign part of
the task to another process in the system.

One important relation between the processes in
such a system is the relation "gives work toll. In
his thesis [6J Habermann assumed that "gives work
to" defined a hierarchy to prove "harmonious coop
eration". If \lIe have an Operating System we want to
show that a request of the system will generate on
ly a finite (and reasonably small) number of re
quests to individual processes before the original
request is satisfied. If the relation "gives work

to" defines a hierarchy, we can prove our result by
examining each process seperately to make sure that
every request to it results in only a finite number
of requests to other processes. If the relation is
not hierarchical, a more difficult, "global", anal
ysis would be required.

Restricting "gives work to" so that it defines a
hierarchy helps in the establishment of the "well
behavedness", but it is certainly not a necessary
condition for "harmonious cooperation".*

*This restriction is also valuable in human organiza
tions. Where requests for administrative work flow
only in one direction things go relatively smoothly,
but in departments where the "leader" constantly re
fers requests "downward" to committees (which can
themselves send requests to the "leader") we often
find the system filling up with uncompleted tasks
and a correspondingly large increase in overhead.

www.manaraa.com

506

In the T.H.E. system the two hierarchies described
above coincided. Every level of abstraction was
achieved by the introduction of parallel processes
and these processes only gave work to those
written to implement lower levels in the program
hierarchy. One should not draw general conclusions
about system structure on the basis of this coinci
dence. For example, the remark that "building a
system with more levels than were found in the T.H.E.
system is undesirable, because it introduces more
queues" is often heard because of this coincidence.
The later work by Dijkstra on structured programming
[21] shows that the levels of abstraction are useful
when there is only one process. Further, the "Haber
mann hierarchy" is useful, when the processes are
controlled by badly structured programs. Adding
levels in the program hierarchy need not introduce
new processes or queues. Adding processes can be done
without writing new programs.

The "program hierarchy" is only significant at times
when humans are working with the program (e.g. when
the program is being constructed or changed). If the
programs were all implemented as macros, there would
be no trace of this hierarchy in the running system.
The "Habermann hierarchy" is a restriction on the
run time behavior of the system. The theorems proven
by Habermann would hold even if a process that is
controlled by a program written at a low level in
the program hierarchy "gave work to" a process which
was controlled by a program originally written at a
higher level in the program hierarchy. There are
also no detrimental effects on the program hierarchy
provided that the programs written at the lower
level are not written in terms of programs at the
higher level. Readers are referred to "Flatland" [7].

3. HIERARCHICAL STRUCTURES RELATING TO RESOURCE

OWNERSHIP AND ALLOCATION

The RC4000 system [8] and [9J enforced a hierarchi
cal relation based upon the ownership of memory. A
generalization of that hierarchical structure has

www.manaraa.com

507

been proposed by Varney [10J and similar hierarchi
cal relationships are to be found in various com
mercial operating systems, though they are not often
formally described.

In the RC4000 system the objects were processes and
the relation was "allocated a memory region to".
Varney proposes extending the relation so that the
hierarchical structure controlled the allocation of
other resources as well. (In the RC4000 systems
specific areas of memory were allocated, but that
was primarily a result of the lack of virtual memory
hardware; in most systems of interest now, we can
allocate quantities of a resource without allocating
the specific physical resources until they are
actually used). In many commercial systems we also
find that resources are not allocated directly to
the processes which use them. They are allocated to
administrative units, who, in turn, may allocate
them to other processes. In these systems we do not
find any loops in the graph of "allocates resources
to", and the relation defines a hierirchy, which is
closely related to the RC4000 structure.

This relation was not a significant one in the
T. H. E. sys tern" where all oca t i ng was done by a cen
tral allocator called a BANKER. Again this sense of
hierarchy is not strongly related to the others, and
if it is present with one or more of the others,
they need not coincide.

The disadvantage of a non-trivial hierarchy (the
hierarchy is present in a trivial form even in the
T.H.E. system) of this sort are (1) poor resource
utilization that may occur when some processes in the
system are short of resources while other processes,
under a different allocator in the hierarchy, have an
excess; (2) high overhead that occurs when resources
are tight. Requests for more resources must always
go up all the levels of the hierarchy before being
denied or granted. The central "banker" does not have
these disadvantages. A central resource allocator,
however, becomes complicated in situations where
groups of related processes wish to dynamically share

www.manaraa.com

508

resources without influence by other such groups.
Such situations can arise in systems that are used in
real time by independant groups of users. The T.H.E.
system did not have such problems and as a result,
centralized resource allocation was quite natural.

It is this particular hierarchical relation which
the Hydra group rejected,. They did not mean to reject
the general notion of hierarchical structure as
suggested in the original report [1] and [11].

4. PROTECTION HIERARCHIES A LA MULTICS

Still another hierarchy can be found in the MULTICS
system. The conventional two level approach to oper
ating systems (low level called the supervisor, next
level the users) has been generalized to a sequence
of levels in the supervisor called "rings". The set
of programs within a MULTICS process is organized in
a hierarchical structure, the lower levels being
known as the inner rings, and the higher levels being
known as outer rings. Although the objects are pro
grams, this relation is not the program hierarchy
discussed in section 1. Calls occur in both direc
tions and lower level programs may use higher level
ones to get their work done [12].

Noting that certain data are much more crucial to
operation of the system than other data, and that
certain procedures are much more critical to the
overall operation of the system than others, the
designers have used this as the basis of their hier
arcny. The data to which the system is most sensitive
are controlled by the inner ring procedures, and
transfers to those programs are very carefully con
trolled. Inner ring procedures have unrestricted
access to programs and data in the outer rings. The
outer rings contain data and procedures that effect
a relatively small number of users and hence are
less "sensitive". The hierarchy is most easily de
fined in terms of a relation "can be accessed by"
sir,ce "sensitivity" in the sense used above is diffi
cult to define. Low levels have unrestricted access
to higher levels, but not vice versa.

www.manaraa.com

509

It is clear that placing restrictions on the rela
tion "can be accessed by" is important to system
reliability and security.

It has, however, been suggested that by insisting
that the relation "can be accessed by" be a hierar
chy, we prevent certain accessibility patterns that
might be desired. We might have three segments in
which A requires access to B, B to C, and C to A.
No other access rights are needed or desirable. If
we insist that "can be accessed by" define a hierar
chy, we must (in this case) use the trivial hierar
chy in which A, S, C are considered one part.

In the view of the author, the member of pairs in
the relation "can be accessed by" should be mini
mized, but he sees no advantage in insisting that it
define a hierarchy [13] and [14].

The actual MULTICS restriction is even stronger than
requiring a hierarchy. Within a process, the rela
tion must be a complete ordering.

5. HIERARCHIES AND "TOP DOWN II DESIGN METHODOLOGY

About the time that the T.H.E. system work appeared,
it became popular to discuss design methods using
such terms as "top down" and "outside in"[15], [16],
and [17]. The simultaneous appearance of papers
suggesting how to design well and a well designed
system led to the unfounded assumption that the
T. H. E. system had been the result of a lltop down ll
design process. Even in more recent work [18] top
down design and structured programming are consid
ered almost synonymous.

Actually lIoutside inll was a much better tenn for
what was intended, than was "top down ll ! The inten
tion was to begin with a description of the system's
user interface, and work in small, verifiable steps
towards the implementation. The IItopli in that hier
archy consisted of those parts of the system that
were visible to the user. In a system designed ac
cording to the IIprogram hierarchy", the lower level

www.manaraa.com

510

functions will be used by the higher level functions 5

but some of them may also be visible to the user
(store and load, for example). Some functions on
higher levels may not be available to him (Restart
system). Those participants in the design of the
T.H.E. system with whom I have discussed the ques
tion [19J, report that they did not proceed with the
design of the higher levels first.

6. HIERARCHICAL STRUCTURE AND DECOMPOSITION

INTO MODULES

Often one wants to view a system as divided into
IImodules" (e.g. with the purpose outlined in [5J and
[20J). This division defines a relation "part of II.
A group of sub-programs is collected into a module,
groups of modules collected into bigger modules, etc.
This process defines a relation "part of" whose
graph is clearly loop-free. It remains loop-free
even if we allow programs or modules to be part of
several modules - the part never includes the whole.

Note that we may allow programs in one module to
call programs in another module, so that the module
hierarchy just defined need not have any connection
with the program hierarchy. Even allowing recursive
calls between modules does not defeat the purpose of
the modular decomposition (e.g. flexibility) [5J,
provided that programs in one module do not assume
much about the programs in another.

7. LEVELS OF LANGUAGE

It is so common to hear phrases such as "high level
1 anguage", "l ow 1 evel language" and "l i nguisti c
level II that it is necessary to comment on the re
lation between the implied language hierarchy and
the hierarchies discussed in the earlier sections
of this paper. It would be nice, if, for example,
the higher level languages were the languages of the
higher level "abstract machines" in the program
hierarchy. Unfortunately, this author can find no
such relation and cannot define the hierarchy

www.manaraa.com

511

that is implied in the use of those phrases. In mo
ments of scepticism one might suggest that the re
lation is "less efficient than" or "has a bigger
grammar than" or "has a bigger compiler than", how
ever, none of those phrases suggests an ordering,
which is completely consistant with the use of the
term. It would be nice, if the next person to use
the phrase "higher level language" in a paper would
define the hierarchy to which he refers.

SUMMARY

The computer system design literature now contains
quite a number of valuable suggestions for improv
ing the comprehensibility and predictability of
computer systems by imposing a hierarchical struc
ture on the programs. This paper has tried to dem
onstrate that, although these suggestions have been
described in quite similar terms, the structures im
plied by those suggestions are not necessarily
closely related. Each of the suggestions must be
understood and evaluated (for its applicability to a
particular system design problem) independantly.
Further, we have tried to show that, while each of
the suggestions offers some advantages over an "un
structured ll design, there are also disadvantages,
which must be considered. The main purpose of this
paper has been to provide some guidance for those
reading earlier literature and to suggest a way for
future authors to include more precise definitions
in their papers on design methods.

ACKNOWLEDGMENT

The Author acknowledges the valuable suggestions of
~·1r. ~1. Bartussek (Techni sche Hochschul e Darmstadt)
and Hr. John Shore (Naval Research Laboratory,
Washington, D.C.). Both of these gentlemen have made
substantial contributions to the more precise formu
lation of many of the concepts in this paper;
neither should be held responsible for the fuzziness,
which unfortunately remains.

www.manaraa.com

512

REFERENCES

[1] Wulf, Cohen, Coowin, Jones, Levin, Pierson,
Pollach, Hydra: The Kernel of a '·1ultiprogram
ming System, Technical Report, Co~puter
Sci ence Department, Carnegi e-r·1ellon Uni vers ity.

[2] David L. Parnas, Information Distribution As
pects of Design Methodology, Proceedings of the
1971 IFIP Congress, Booklet TA/3, 26-30.

[3] r.W. Dijkstra, The Structure of the T.H.E.
Hultiprogramming System, Communications of the
ACr·" vol 11, no. 5, !·1ay 1968, 341-346.

[4] £]W. Dijkstra, Complexity controlled by Hier
archical Ordering of Function and Variability,
Software Engineering, NATO.

[5] David L. Parnas, On the Criteria to be Used in
Decomposing Systems into t40dules, Convnunica
tions of the ACr·1, vol. 15, no. 12, December
1972, 1053-1058.

[6] A.N. Habermann, On the Harmonious Cooperation
of Abstract Machines, Doctoral Dissertation,
Technische Hogeschool Eindhoven, The Nether
lands.

[7J Edwin A. Abbott, Flatland, the Romance of Many
Dimensions, Dover Publications, Inc., New York,
1952.

[8J Per Brinch Hansen, The Nucleus of a Multipro
gramming System, Communications of the ACM,
vol. 13, no. 4, April 1970, 238-250.

[9J RC4000 Reference Manuals for the Operating
System, Regnecentralen Denmark.

[loJ R.C. Varney, Process Selection in a Hierar
chical Operating System, SIGOPS Operating
Review, June 1972.

[11] W. Wulf, C. Pierson, Private Discussions.
[12J R.H. Graham, Protection in an Information Pro

cessing Utility, Communications of the ACM,
Hay 1968.

[13] ~.R. Price and David L. Parnas, The Design of
the Virtual Memory Aspects of a Virtual Machine,
Proceedings of the SIGARCH-SIGOPS Workshop on
Virtual t1achines, March 1973.

[14J W.R. Price, Doctoral Dissertation, Department
of Computer Science, Carnegie-Mellon Univer
sity, Pittsburgh, Pa., U.S.A.

www.manaraa.com

513

[15] David L. Parnas and Darringer, SODAS and
r~ethodology for System Design,Proceedings of
1967 FJCC.

[16] David L. Parnas, More on Design Hethodology
and Simulation, Proceedings of the 1969 SJCC.

[17] Zurcher and Randell, Iteratlve Multi-Level
Modeling, Proceedings of the 1968 IFIP Con ress.

[18] F.T. Baker, ystem ua lty t roug tructure
Programming, proceedinSs of the 1972 FJCC.

[19] E.W. Dijkstra, A.N. Ha ermann, Private Dis
cussions

[20] David l. Parnas, Some Conclusions from an Ex
periment in Software Engineering, Proceedings
of the 1972 FJCC.

[21] E.W. Dijkstra, A Short Introduction to the Art
of Programming, in O.-J. Dahl, E.W. Dijkstra,
and C.A.R. Hoare, Structured Programming, Aca
demi c Pres s, tJe\,1 York, 1972.

www.manaraa.com

Niklaus Wirth

The Programming Language Pascal

Acta Informatica, Vol. 1, Pasco 1, 1971
pp.35-63

www.manaraa.com

Acta Informatica 1, 35-63 {1971}
CD by Springer-Verlag 1971

The Programming Language Pascal

N. WIRTH *
Received October 30, 1970

Summary. A programming language called Pascal is described which was developed
on the basis of ALGOL 60. Compared to ALGOL 60, its range of applicability is con
siderably increased due to a variety of data structuring facilities. In view of its
intended usage both as a convenient basis to teach programming and as an efficient
tool to write large programs, emphasis was placed on keeping the number of funda
mental concepts reasonably small, on a simple and systematic language structure,
and on efficient implementability. A one-pass compiler has been constructed for the
CDC 6000 computer family; it is expressed entirely in terms of Pascal itself.

1. Introduction
The development of the language Pascal is based on two principal aims. The

first is to make available a language suitable to teach programming as a systematic
discipline based on certain fundamental concepts clearly and naturally reflected
by the language. The second is to develop implementations of this language which
are both reliable and efficient on presently available computers, dispelling the
commonly accepted notion that useful languages must be either slow to compile
or slow to execute, and the belief that any nontrivial system is bound to contain
mistakes forever.

There is of course plenty of reason to be cautious with the introduction of yet
another programming language, and the objection against teaching programming
in a language which is not widely used and accepted has undoubtedly some justi
fication -at least based on short-term commercial reasoning. However, the choice
of a language for teaching based on its widespread acceptance and availability,
together with the fact that the language most widely taught is thereafter going
to be the one most widely used, forms the safest recipe for stagnation in a subject
of such profound paedagogical influence. I consider it therefore well worth-while
to make an effort to break this vicious circle.

Of course a new language should not be developed just for the sake of novelty;
existing languages should be used as a basis for development wherever they meet
the chosen objectives, such as a systematic structure, flexibility of program and
data structuring, and efficient implementability. In that sense ALGOL 60 was used
as a basis for Pascal, since it meets most of these demands to a much higher
degree than any other standard language [1]. Thus the principles of structuring,
and in fact the form of expressions, are copied from ALGOL 60. It was, however,
not deemed appropriate to adopt ALGOL 60 as a subset of Pascal; certain con
struction principles, particularly those of declarations, would have been incom-

* Fachgruppe Computer-Wissenschaften, Eidg. Technische Hochschule, Ziirich,
Schweiz.

www.manaraa.com

518

patible with those allowing a natural and convenient representation of the ad
ditional features of Pascal. However, conversion of ALGOL 60 programs to Pascal
can be considered as a negligible effort of transcription, particularly if they obey
the rules of the IFIP ALGOL Subset [2].

The main extensions relative to ALGOL 60 lie in the domain of data structuring
facilities, since their lack in ALGOL 60 was considered as the prime cause for its
relatively narrow range of applicability. The introduction of record and file
structures should make it possible to solve commercial type problems with Pascal,
or at least to employ it successfully to demonstrate such problems in a pro
gramming course. This should help erase the mystical belief in the segregation
between scientific and commercial programming methods. A first step in extending
the data definition facilities of ALGOL 60 was undertaken in an effort to define
a successor to ALGOL in 1965 [3]. This language is a direct predecessor of Pascal,
and was the source of many features such as e.g. the while and case statements
and of record structures.

Pascal has been implemented on the CDC 6000 computers. The compiler is
written in Pascal itself as a one-pass system which will be the subject of a sub
sequent report. The "dialect" processed by this implementation is described by
a few amendments to the general description of Pascal. They are included here
as a separate chapter to demonstrate the brevity of a manual necessary to
characterise a particular implementation. Moreover, they show how facilities are
introduced into this high-level, machine independent programming language,
which permit the programmer to take advantage of the characteristics of a
particular machine.

The syntax of Pascal has been kept as simple as possible. Most statements and
declarations begin with a unique key word. This property facilitates both the
understanding of programs by human readers and the processing by computers.
In fact, the syntax has been devised so that Pascal texts can be scanned by the
simplest techniques of syntactic analysis. This textual simplicity is particularly
desirable, if the compiler is required to possess the capability to detect and
diagnose errors and to proceed thereafter in a sensible manner.

2. Summary of the Language

An algorithm or computer program consists of two essential parts, a description
of actions which are to be performed, and a description of the data which are
manipulated by these actions. Actions are described in Pascal by so-called state
ments, and data are described by so-called declarations and definitions.

The data are represented by values of variables. Every variable occuring in
a statement must be introduced by a variable declaration which associates an
identifier and a data type with that variable. The data type essentially defines
the set of values which may be assumed by that variable. A data type may in
Pascal be either directly described in the variable declaration, or it may be
referenced by a type identifier, in which case this identifier must be described
by an explicit type definition.

The basic data types are the scalar types. Their definition indicates an ordered
set of values, i.e. introduces an identifier as a constant standing for each value

www.manaraa.com

519

in the set. Apart from the definable scalar types, there exist in Pascal four
standard scalar types whose values are not denoted by identifiers, but instead
by numbers and quotations respectively, which are syntactically distinct from
identifiers. These types are: integer, real, char, and alia.

The set of values of type char is the character set available on the printers
of a particular installation. ALia type values consist of sequences of characters
whose length again is implementation dependent, i.e. is the number of characters
packed per word. Individual characters are not directly accessible, but alia quan
tities can be unpacked into a character array (and vice-versa) by a standard
procedure.

A scalar type may also be defined as a subrange of another scalar type by
indicating the smallest and the largest value of the subrange.

Structured types are defined by describing the types of their components and
by indicating a structuring metlwd. The various structuring methods differ in the
selection mechanism serving to select the components of a variable of the struc
tured type. In Pascal, there are five structuring methods available: array struc
ture, record structure, powerset structure, file structure, and class structure.

In an a"ay structure, all components are of the same type. A component is
selected by an array selector, or computable index, whose type is indicated in
the array type definition and which must be scalar. It is usually a programmer
defined scalar type, or a subrange of the type integer.

In a record structure, the components (called lields) are not necessarily of the
same type. In order that the type of a selected component be evident from the
program text (without executing the program), a record selector does not contain
a computable value, but instead consists of an identifier uniquely denoting the
component to be selected. These component identifiers are defined in the record
type definition.

A record type may be specified as consisting of several variants. This implies
that different variables, although said to be of the same type, may assume
structures which differ in a certain manner. The difference may consist of a
different number and different types of components. The variant which is assumed
by the current value of a record variable is indicated by a component field which
is common to all variants and is called the tag field. Usually, the part common
to all variants will consist of several components, including the tag field.

A porcerset structure defines a set of values which is the powerset of its base
type, i.e. the set of all subsets of values of the base type. The base type must
be a scalar type, and will usually be a programmer-defined scalar type or a
subrange of the type integer.

A lile structure is a sequence of components of the same type. A natural
ordering of the components is defined through the sequence. At any instance,
only one component is directly accessible. The other components are made acces
sible through execution of standard file positioning procedures. A file is at any
time in one of the three modes called input, output, and neutral. According to
the mode, a file can be read sequentially, or it can be written by appending
components to the existing sequence of components. File positioning procedures
may influence the mode. The file type definition does not determine the number
of components, and this number is variable during execution of the program.

www.manaraa.com

520

The class structure defines a class of components of the same type whose
number may alter during execution of a program. Each declaration of a variable
with class structure introduces a set of variables of the component type. The set
is initially empty. Every activation of the standard procedure alloc (with the class
as implied parameter) will generate (or allocate) a new component variable in the
class and yield a value through which this new component variable may be ac
cessed. This value is called a pointer, and may be assigned to variables of type
pointer. Every pointer variable, however, is through its declaration bound to a
fixed class variable, and because of this binding may only assume values pointing
to components of that class. There exists a pointer value nil which points to no
component whatsoever, and may be assumed by any pointer variable irrespective
of its binding. Through the use of class structures it is possible to construct data
corresponding to any finite graph with pointers representing edges and com
ponent variables representing nodes.

The most fundamental statement is the assignment statement. It specifies that
a newly computed value be assigned to a variable (or component of a variable).
The value is obtained by evaluating an expression. Pascal defines a fixed set of
operators, each of which can be regarded as describing a mapping from the
operand types into the result type. The set of operators is subdivided into
groups of

1. arithmetic operators of addition, subtraction, sign inversion, multiplication,
division, and computing the remainder. The operand and result types are the
types integer and real, or subrange types of integer.

2. Boolean operators of negation, union (or), and conjunction (and). The
operand and result types are Boolean (which is a standard type).

3. set operators of union, intersection, and difference. The operands and
results are of any powerset type.

4. relational operators of equality, inequality, ordering and set membership.
The result of relational operations is of type Boolean. Any two operands may
be compared for equality as long as they are of the same type. The ordering
relations apply only to scalar types.

The assignment statement is a so-called simple statement, since it does not
contain any other statement within itself. Another kind of simple statement is
the procedure statement, which causes the execution of the designated procedure
(see below). Simple statements are the components or building blocks of structured
statements, which specify sequential, selective, or repeated execution of their
components. Sequential execution of statements is specified by the compound
statement, conditional or selective execution by the if statement and the case
statement, and repeated execution by the repeat statement, the while statement,
and the for statement. The if statement serves to make the execution of a statement
dependent on the value of a Boolean expression, and the case statement allows
for the selection among many statements according to the value of a selector.
The for .statement is used when the number of iterations is known beforehand,
and the repeat and while statements are used otherwise.

A statement can be given a name (identifier), and be referenced through that
identifier. The statement is then called a procedure, and its declaration a procedure

www.manaraa.com

521

declaration. Such a declaration may additionally contain a set of variable declara
tions, type definitions and further procedure declarations. The variables, types
and procedures thus defined can be referenced only within the procedure itself,
and are therefore called local to the procedure. Their identifiers have significance
only within the program text which constitutes the procedure declaration and
which is called the scope of these identifiers. Since procedures may be declared
local to other procedures, scopes may be nested.

A procedure may have a fixed number of parameters, which are classified
into constant-, variable-, procedure-, and function parameters. In the case of a
variable parameter, its type has to be specified in the declaration of the formal
parameter. If the actual variable parameter contains a (computable) selector,
this selector is evaluated before the procedure is activated in order to designate
the selected component variable.

Functions are declared analogously to procedures. In order to eliminate side
effects, assignments to non-local variables are not allowed to occur within the
function.

3. Notation, Terminology, and Vocabulary

According to traditional Backus-Naur fonn, syntactic constructs are denoted
by English words enclosed between the angular brackets (and). These words
also describe the nature or meaning of the construct, and are used in the ac
companying description of semantics. Possible repetition of a construct is indicated
by an asterisk (0 or more repetitions) or a circled plus sign (1 or more repetitions).
If a sequence of constructs to be repeated consists of more than 'one element,
it is enclosed by the meta-brackets {and}.

The basic vocabulary consists of basic symbols classified into letters, digits,
and special symbols.

(letter) :: = AlB I CI DI EIFI GI HI 1111 KI L I MI NI 0 I PI QIRISI TIUIVIWIXIYIZI
al b I c I die II Ie I hi iii I kill min 101 p I q I r lsi t lui vi wi xlyl z

(digit) :: = 0111213 1415161 71819
(special symbol) :: = + I-I * III v I AI ' I = I :+= I < I > I :s;: I ~ I (I) I [I] I {I } I : = I

10 1·1 ' I ; I : I ' I t I div I mod I nil I in I

The construct

if I then I else I case I of I repeat I until I while I do I
for I to I downto I begin I end I with I goto I
var I type I array I record I powerset I file I class I
function I procedure I const

{ (any sequence of symbols not containing "}") }

may be inserted between any two identifiers, numbers (d. 4). or special symbols.
It is called a comment and may be removed from the program text without
altering its meaning.

www.manaraa.com

522

4. Identifiers and Numbers

Identifiers serve to denote constants, types, variables, procedures and func
tions. Their association must be unique within their scope of Validity, i.e. within
the procedure or function in which they are declared (cf. 10 and 11).

(identifier) ::= (letter) (letter or digit)·

(letter or digit) ::= (letter), (digit)

The decimal notation is used for numbers, which are the constants of the data
types integer and ,eal. The symbol 10 preceding the scale factor is pronounced
as If times 10 to the power of".

(number) :::z: (integer), (real number)
(integer) ::= (digit)-
(real number) ::= (digit)-. <digit)-,

<digit)-. <digit)-lo <scale factor) 1 <integer)10 <scale factor)
(scale factor) ::= (digit)-, <sign) (digit)-

<sign) ::= + 1-
Examples:

1 100 0.1

5. Constant Definitions

A constant definition introduces an identifier as a synonym to a constant.

<unsigned constant) ::= (number) ,'<character)-', (identifier) 1 nil
(constant) ::= (unsigned constant), (sign) (number)
(constant definition) ::= (identifier) = (constant)

6. Data Type Definitions

A data type determines the set of values which variables of that type may
assume and associates an identifier with the type. In the case of structured
types, it also defines their structuring method.

(type) ::= (scalar type), (subrange type), (array type), (record type),
(powerset type) 1 (file type) 1 (class type) 1 (pointer type) 1
(type identifier)

(type identifier) ::= (identifier)

(type definition) ::= (identifier) = (type)

6.1. Scala, Types
A scalar type defines an ordered set of values by enumeration of the identifiers

which denote these values.

<scalar type) ::= (identifier) {, (identifier)}·)

www.manaraa.com

Examples:

(red, orange, yellow, green, blue)
(club, diamond, heart, spade)

523

(Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday)

Functions applying to all scalar types are:

suec the succeeding value (in the enumeration)
pred the preceding value (in the enumeration)

6.1.1. Standard Scalar Types
The following types are standard in Pascal, i.e. the identifier denoting them

is predefined:

integer the values are the integers within a range depending on the particular
implementation. The values are denoted by integers (d. 4) and not by
identifiers.

real the values are a subset of the real numbers depending on the particular
implementation. The values are denoted by real numbers as defined in
paragraph 4.

Boolean Valse, true)
char the values are a set of characters depending on a particular implementa

tion. They are denoted by the characters themselves enclosed within
quotes.

alia the values are sequences of n characters, where n is an implementation
dependent parameter. If « and p are values of type alfa

then

«=p, if and only if

«<P, if and only if

«>p, if and only if

«=~ ... all ••• a,.

p = bl ... bll ••• b,.,

ai=bi for i=1 ... n,

ai=bi for i=1 ... k-1

4i=bi for i=1 ... k-1

and all<bll ,

and all>bll •

Alfa values are denoted by sequences of (at most) n characters enclosed
in quotes. Trailing blanks may be omitted. Alfa quantities may be
regarded as a packed representation of short character arrays (d. also
10·1.3·)·

6.1.2. Subrange Types
A type may be defined as a subrange of another scalar type by indication

of the least and the highest value in the subrange. The first constant specifies
the lower bound, and must not be greater than the upper bound.

(subrange type) ::= (constant) .. (constant)

www.manaraa.com

Examples:

1..100

-10 .. +10

Monday . . Friday

6.2. Structured Types
6.2.1. Array Types

524

An array type is a structure consisting of a fixed number of components
which are all of the same type, called the component type. The elements of the
array are designated by indices, values belonging to the so-called index type.
The array type definition specifies the component type as well as the index type.

(array type) ::= array [(index type) {, (index type)}*] of (component type)
(index type) ::= (scalar type) I (subrange type) I (type identifier)
(component type) ::= (type)

If n index types are specified, the array type is called n-dimensional, and a
component is designated by n indices.

Examples:

array [1. .100] of real
array [1. . 10, 1.. 20] of O .. 99

array [-10 .. + 10] of Boolean

array(Boolean] ofColar

6.2.2. Record Types
A record type is a structure consisting of a fixed number of components,

possibly of different types. The record type definition specifies for each component,
called field, its type and an identifier which denotes it. The scope of these so
called field identifiers is the record definition itself, and they are also accessible
within a field designator (cf. 7.2) refering to a record variable of this type.

A record type may have several variants, in which case a certain field is
designated as the tag field, whose value indicates which variant is assumed by
the record variable at a given time. Each variant structure is identified by a
case label which is a constant of the type of the tag field.

(record type) ::= record (field list) end
(field list) ::= (fixed part) I (fixed part); (variant part) I (variant part)
(fixed part) ::= (record section) {; (record section)}*
(record section) ::= (field identifier) {, (field identifier)}*: (type)
(variant part) ::= case (tag field) : (type identifier) of (variant) {; (variant)}*
(variant) ::= {(case label) :}$ (field list») I {(case label)}$
(case label) ::= (unsigned constant)
(tag field) ::= (identifier)

www.manaraa.com

Examples:

record day: 1 .. 31;
month: 1. .12;
year: 0 .. 2000

end

record name,lirstname: alia;
age: o .. 99;

end

record x, y: real;
area: real;

case s: Shape of
triangle: (side: real;

525

inclination, angleJ angle2: Angle);
rectangle: (sidel, side2: real;

skew, angle3: Angle);
circle: (diameter: real)
end

6.2.3. Powerset Types
A powerset type defines a range of values as the powerset of another scalar

type, the so-called base type. Operators applicable to all powerset types are:

v uruon
1\ intersection

set difference
in membership
<powerset type) :: = powerset <type identifier> I powerset < subrange type)

6.2.4. File Types
A file type definition specifies a structure consisting of a sequence of com

ponents, all of the same type. The number of components, called the length of
the file, is not fixed by the file type definition, i.e. each variable of that type
may have a value with a different, varying length.

Associated with each variable of file type is a lile position or lile pointer
denoting a specific element. The file position or the file pointer can be moved
by certain standard procedures, some of which are only applicable when the file
is in one of the three modes: input (being read), output (being written), or neutral
(passive). Initially, a file variable is in the neutral mode.

(file type) ::= file of (type)

6.2.5. Class Types
A class type definition specifies a structure consisting of a class of components,

all of the same type. The number of components is variable; the initial number

www.manaraa.com

526

upon declaration of a variable of class type is zero. Components are created
(allocated) during execution of the program through the standard procedure alloc.
The maximum number of components which can thus be created, however, is
specified in the type definition.

(class type) ::= class (maxnum) of (type)
(maxnum) ::= (integer)

6.2.6. Pointer Types
A pointer type is associated with every variable of class type. Its values are

the potential pointers to the components of that class variable (cf. 7.5), and the
pointer eonstant nil, designating no component. A pointer type is said to be
bound to its class variable.

(pointer type) :: = t (class variable)
(class variable) :: = (variable)

Examples of type definitions:

Color = (red, yellow, green, blue)
Sex = (male, female)
Char file = file of char
Shape = (triangle, rectangle, circle)
Card = array [1 .. 80] of char
Complex = record realpart, imagpart: real end
Person = record name, firstname: alfa;

age: integer;
married: Boolean;
fathsr, youngestchild, eldersibling: t family;

case s: Sex of
male: (enlisted, bold: Boolean);
female: (pregnant: Boolean;

size: array [1.. 3J of integer)
end

7. Declarations and Denotations of Variables
Variable declarations consist of a list of identifiers denoting the new variables,

followed by their type.

(variable declaration) :: = (identifier) {, (identifier»·: (type)

Two standard file variables can be assumed to be predeclared as

input, output: file of char

The file input is restricted to input mode (reading only), and the file output is
restricted to output mode (writing only). A Pascal program should be regarded
as a procedure with these two variables as formal parameters. The corresponding

www.manaraa.com

527

actual parameters are expected either to be the standard input and output media
of the computer installation, or to be specifyable in the system command activating
the Pascal system.

Examples:

x, y, z: real
u, v: Complex
i, i: integer
k: 0 .. 9
p, q: Boolean
operator: (plus, times, absval)
a: array [0 .. 63] of real
b: array [Color, Boolean] of

record occurrence: integer;
appeal: real

end
c: Color
I: file of Card
huel, hue2: powerset Color
lamily: class 100 of Person
pl, p2: t/amily

Denotations of variables either denote an entire variable or a component of a
variable.

(variable) ::= (entire variable) I (component variable)

7.1. Entire Variables
An entire variable is denoted by its identifier.

(entire variable) ::= (variable identifier)
(variable identifier) :: = (identifier)

7.2. Component Variables
A component of a variable is denoted by the denotation for the variable

followed by a selector specifying the component. The form of the selector depends
on the structuring type of the variable.

(component variable) ::= (indexed variable) I (field designator) I
(current file component) I (referenced component)

7.2.1. Indexed Variables
A component of an n-dimensional array variable is denoted by the denotation

of the variable followed by n index expressions.

(indexed variable) ::= (array variable) [(expression) {, <expression) }*J
(array variable) ::= <variable)

www.manaraa.com

528

The types of the index expressions must correspond with the index types
declared in the definition of the array type.

Examples:

a [12]

a [i +fJ
b [,.ed~ t,.ue]
b [succ(c), PAq]

/H1]

7.2.2. Field Designators
A component of a record variable is denoted by the denotation of the~record

variable followed by the field identifier of the component.

(field designator) ::= (record variable). (field identifier)
(record variable) ::= (variable)

(field identifier) ::= (identifier)

Examples:

u . ,.ealParl
v • ,.ealparl
b [,.ed, t,.ue]. appeal

PZt· size

7.2.,. Current File Components
At any time, only the one component determined by,.the current file position

(or file pointer) is directly accessible.

(current file component) ::= (file variable) t
(file variable) ::= (variable)

7.2.4. Referenced Components

Components of class variables are referenced by pointers.

(referenced component) :: = (pointer variable> t
(pointer variable) ::= (variable)

Thus, if PI is a pointer variable which is bound to a class variable v, pI denotes
that variable and its pointer value, whereas PI t denotes the component of v
referenced by pl.

Examples:

PI t· lather
pI t· eldersibling t. youngestchild

www.manaraa.com

529

8. Expressions

Expressions are constructs denoting rules of computation for obtaining values
of variables and generating new values by the application of operators. Expressions
consist of operands, i.e. variables and constants, operators, and functions.

The rules of composition specify operator precedences according to four classes
of operators. The operator , has the highest precedence, followed by the so
called multiplying operators, then the so-called adding operators, and finally,
with the lowest precedence, the relational operators. Sequences of operators of
the same precedence are executed from left to right. These rules of precedence
are reflected by the following syntax:

(factor) ::= (variable) I (unsigned constant) I (function designator) I
(set) I (expression») I' (factor)

(set) ::= [(expression) {, (expression) }*] I []
(term) :: = (factor) I (term) (multiplying operator) (factor)

(simple expression) ::= (term) I
(simple expression) (adding operator) (term) I
(adding operator) (term)

(expression) ::= (simple expression) I
(simple expression) (relational operator)
(simple expression)

EXpressions which are members of a set must all be of the same type, which
is the base type of the set. [] denotes the empty set.

Examples:

Factors:

Terms:

15
(x+y+z)
sin(x+y)
[,.ed, c, green]

'1'
x*y
i/(1-i)

PAll
(x ~y) 1\ (y<z)

Simple expressions: x + y

-x
huelvhue2

i*i +1

www.manaraa.com

530

9. i .1. Assignment Statements
The assignment statement serves to replace the current value of a variable

by a new value indicated by an expression. The assignment operator symbol
is :=, pronounced as "becomes".

(assignment statement) ::= (variable):= (expression)!
(function identifier) := (expression)

The variable (or the function) and the expression must be must be of identical
type (but neither class nor file type), with the following exceptions permitted:

i. the type of the variable is ,.eal, and the type of the expression is intege1'
or a subrange thereof.

2. the type of the expression is a subrange of the type of the variable.

Examples:

x:=y+2.5
p:= (1~i)A(i<100)
i:= sqr(k) -(i*i)

hue:= [blue, succ(c)]

9.1.2. Procedure Statements
A procedure statement serves to execute the procedure denoted by the pro

cedure identifier. The procedure statement may contain a list of actual paramete1's
which are substituted in place of their corresponding lannal parameters defined
in the procedure declaration (cf. 10). The correspondence is established by the
positions of the parameters in the lists of actual and formal parameters respec
tively. There exist four kinds of parameters: variable-, constant-, procedure
parameters (the actual parameter is a procedure identifier), and function para
meters (the actual parameter is a function identifier).

In the case of variable parameters, the actual parameter must be a variable.
If it is a variable denoting a component of a structured variable, the selector
is evaluated when the substitution takes place, i.e. before the execution of the
procedure. If the parameter is a constant parameter, then the corresponding
actual parameter must be an expression.

(procedure statement) ::= (procedure identifier)!
(procedure identifier) (actual parameter)
{, (actual parameter)}*)

(pr~cedure identifier) :: = (identifier)

(actual parameter) ::= (expression) I (variable)!

Examples:

next

Transpose (a, n, m)

(procedure identifier) I (function identifier)

Bisect (sin. - i. + 2, x, g)

www.manaraa.com

531

9.1.3. Goto Statements
A goto statement serves to indicate that further processing should continue

at another part of the program text, namely at the place of the label. Labels
can be placed in front of statements being part of a compound statement (d. 9.2.1.).

(goto statement) ::= goto (label)
(label) ::= (integer)

The following restriction holds concerning the applicability of labels:
The scope (d. 10) of a label is the procedure declaration within which it

is defined. It is therefore not possible to jump into a procedure ..

9.2. Structured Statements
Structured statements are constructs composed of other statements which

have to be executed either in sequence (compound statement), conditionally
(conditional statements), or repeatedly (repetitive statements).

(structured statement) ::= (compound statement) I .
(conditional statement) I (repetitive statement) I
(with statement)

9.2.1. Compound Statements
The compound statement specifies that its component statements are to be

executed in the same sequence as they are written. Each statement may be
preceded by a label which can be referenced by a goto statement (cf.9.1.;.).

(compound statement) ::=
begin (component statement) {; (component statement)}· end

(component statement) :: =
(statement) I (label definition) (statement)

(label definition) :: = (label) :

Example:

begin z:= x; x:= y; y:= z end

9.2.2. Conditional Statements
A conditional statement selects for execution a single one of its component

statements.

(conditional statement) ::= (if statement) I (case statement)

9.2.2.1. If Statements
The if statement specifies that a statement be executed only if a certain

condition (Boolean expression) is true. If it is false, then either no statement is
to be executed, or the statement following the symbol else is to be executed.

(if statement) ::= if (expression) then (statement) I
if (expression) then (statement) else (statement)

The expression between the symbols if and then must be of type Boolean.

www.manaraa.com

532

Note: The syntactic ambiguity arising from the construct

if (expression-i) then if (expression-2> then (statement-i)
else (statement-2)

is resolved by interpreting the construct as equivalent to

if (expression -1) then
begin if (expression-2) then (statement-i) else (statement-2)
end

Examples:

if x<1.5 then z:= x+y else z:= 1.5
if P * nil then p:= Pt. father

9.2.2.2. Case Statements
The case statement consists of an expression (the selector) and a list of state

ments, each being labeled by a constant of the type of the selector. It specifies
that the one statement be executed whose label is equal to the current value of
the selector.

(case statement) :: = case (expression) of
(case list element) {; (case list element)}* end

(case list element) ::= {(case label):}$ (statement) I {(case label):}$

Example:

case operator of
plus: x:= x+y;
times: x:= x*y;
absval: if x < 0 then x: = - x
end

9.2.3. Repetitive Statements
Repetitive statements specify that certain statements are to be executed

repeatedly. If the number of repetitions is known beforehand, i.e. before the
repetitions are started, the for statement is the appropriate construct to express
this situation; otherwise the while or repeat statement should be used.

(repetitive statement) ::= (while statement) I
(repeat statement) I (for statement)

9.2.3.1. While Statements

(while statement) ::= while (expression) do (statement)
The expression controlling repetition must be of type Boolean. The statement is
repeatedly executed until the expression becomes false. If its value is false at
the beginning, the statement is not executed at all. The while statement

while e do S

www.manaraa.com

is equivalent to

if e then
begin S;

while e do S
end

Examples:

533

while (a[iJ =4= x) A (i<n) doi:=i+1
while i>O do
begin if otld (i) then z: = z '" x;

i:= i div 2;
x:=sqr(x)

end

9.2.,.2. Repeat Statements
(repeat statement) ::=

repeat (statement) {; (statement)}'" until (expression)

The expression controlling repetition must be of type Boolean. The sequence of
statements between the symbols repeat and until is repeatedly (and at least
once) executed until the expression becomes true. The repeat statement

repeat S until e

is equivalent to

begin S;
if,e then

repeat S until e
end

Examples:

repeat k:= i mod i;
i:=i;
i:=k

until i =0

repeat get (I)
until (/t=a)veol(/)

9.2.,.,. For Statements
The for statement indicates that a statement is to be repeatedly executed

while a progression of values is assigned to a variable which is called the control
variable of the for statement.

(for statement) ::= for (control variable>:= (for list) do (statement)
(for list) :: = (initial value) to (final value) I

(initial value) downto (final value)

www.manaraa.com

<control variable) ::= <identifier)
<initial value) :: = <expression)
<final value) :: = <expression)

534

The control variable, the initial value, and the final value must be of the same
scalar type (or subrange thereof).

A for statement of the form

for v : = el to e2 do S

is equivalent to the statement

if el ~ e2 then
beginv:=el; S;

for v:= succ(v) to e2 do S
end

and a for statement of the form

for v : = el downto e2 do S

is equivalent to the statement

if el ~ e2 then
begin v:= el; S;

for v: = pred (v) downto e2 do S
end

Note: The repeated statement S must alter neither the value of the control
variable nor the final value.

Examples:

for i:= 2 to 100 do if a [i] > max then max:= a [i]
for i : = 1 to n do
for i:= 1 to n do
begin x:= 0;

for k:= 1 to n do x:= x+a[i, kJ*b[k, 11;
c[i,tl:= x

end
for c : = red to blue do try (c)

9.2.4. With Statements

<with statement) ::= with <record variable) do <statement)

Within the component statement of the with statement, the components (fields)
of the record variable specified by the with clause can be denoted by their field
identifier only, i.e. without preceding them with the denotation of the entire
record variable. The with clause effectively opens the scope containing the field
identifiers of the specified record variable, so that the field identifiers may occur
as variable identifiers.

www.manaraa.com

Example:

with dale do
begin

if month = 12 then

535

begin month: = 1; year: = year + 1
. end else month: = month + 1

end

This statement is equivalent to

begin
if dale . month = 12 then
begin date. month: = 1; date. year: = date. year + 1
end else date. month: = date. month + 1

end

10. Procedure Declarations

Procedure declarations serve to define parts of programs and to associate
identifiers with them so that they can be activated by procedure statements.
A procedure declaration consists of the following parts, any of which, except
the first and the last, may be empty:

<procedure declaration) :: =
<procedure heading)
<constant definition part) <type definition part)
<variable declaration part)
<procedure and function declaration part) <statement part)

The procedure heading specifies the identifier naming the procedure and the
fonnal parameter identifiers (if any). The parameters are either constant-,
variable, procedure-, or function parameters (d. also 9.1.2.).

<procedure heading) :: = procedure <identifier) ; I
procedure <identifier) «fonnal parameter section)
{; <formal parameter section)}·) ;

<formal parameter section) ::=
<parameter group) I
const <parameter group) {; (parameter group)}· I
var (parameter group) {; (parameter group)}· I
fundion <parameter group) I
procedure <identifier) {, <identifier)}·

(parameter group) :: = (identifier) {, (identifier)}·: (type identifier)

A parameter group without preceding specifier implies constant parameters.
The constant definition part contains all constant synonym definitions local

to the procedure.

(constant definition part) :: = <empty) I
const (constant definition) {, (constant definition))·;

www.manaraa.com

536

The type definition part contains all type definitions which are local to the
procedure declaration.

(type definition part) ::= (empty) I
type (type definition) {; (type definition)}·;

The variable declaration part contains all variable declarations local to the
procedure declaration.

(variable declaration part) ::= (empty) I
var (variable declaration) {; (variable declaration)}·;

The procedure and function declaration part contains all procedure and function
declarations local to the procedure declaration.

(procedure and function declaration part) ::=
{ (procedure or function declaration) ;}*

(procedure or function declaration) :: =
(procedure declaration) I (function declaration)

The statement part specifies the algorithmic actions to be executed upon an
activation of the procedure by a procedure statement.

(statement part) ::= (compound statement)

All identifiers introduced in the formal parameter part, the constant definition
part, the type definition part, the variable-, procedure or function declaration
parts are local to the procedure declaration which is called the scope of these
identifiers. They are not known outside their scope. In the case of local variables,
their values are undefined at the beginning of the statement part.

The use of the procedure identifier in a procedure statement within its
declaration implies recursive execution of the procedure.

Examples of procedure declarations:

procedure readinteger (var x: integer);
var i, i: integer;

begin i:= 0;
while (inputt ~ '0') A (inputt =::;; '9') do
begin i: = int(inputt) -int (' 0');

end;
x:= i

end

i:= i·10+i;
get (input)

procedure Bisect (function I: real; const low, high: real;
var, zero: real; p: Boolean);
var a, b, m: real;

begin a:= low; b:= high;
if (f(a) 60) v (t(b) ~ 0) then p:= false else

www.manaraa.com

537

begin p : = true;
while abs(a-b) >eps do
begin m:= (a +b)f2;

if j(m) >0 then b:= m else a:= m
end;
zero:= a

end
end

procedure GCD(m, n: integer; vor, x, y, z: integer); {m~O, n>O}
vor aI, a2, bl, b2, c, d, q, 1': integer;
begin{Greatest Common Divisor x of m and n,

Extended Euclid's Algorithm, d. [4]. p. 14}
c:=m; d:=n;
al:=O; a2:=1; bl:=1; b2:=0;
while d =1=0 do
begin {al*m + bl*n = d, a2*m + n2*n = c,

gcd(c, d) =gcd(m, n)}

end;

q : = c div d; 1': = c mod d;
{c =q*d +1', gcd(d, 1') =gcd(m, n)}
a2:= a2-q*al; b2:= b2-q*bl;
{a2*m + b2*n = 1', al*m + bl*n = d}
c:=d; d:=r;
r:=al; al:=a2; a2:=1';
l' : = bl; bl: = b2; b2 : = 1';
{al*m + bl*n = d, a2*m + b2*n = c,
gcd (c, d) = gcd (m, n)}

{gcd(c, 0) =c=gcd(m, n)}
x:= c; y:= a2; z:= b2
{x=gcd(m, n), y*m+z*n=gcd(m, n)}

end

10.1. Standard Procedures

Standard procedures are supposed to be predeclared in every implementation
of Pascal. Any implementation may feature additional predeclared procedures.
Since they are, as all standard quantities, assumed as declared in a scope sur
rounding the Pascal program, no conflict arises form a declaration redefining
the same identifier within the program. The standard procedures are listed and
explained below.

10.1.1. File Positioning Procedures

put(j) advances the file pointer of file j to the next file component. It is
only applicable, if the file is either in the output or in the neutral
mode. The file is put into the output mode.

www.manaraa.com

538

get(f) advances the file pointer of file f to the next file component. It is
only applicable, if the file is either in the input or in the neutral mode.
If there does not exist a next file component, the end-of-file condition
arises, the value of the variable denoted by It becomes undefined, and
the file is put into the neutral mode.

reset (/) the file pointer of file I is reset to its beginning, and the file is put
into the neutral mode.

10.1.2. Class Component Allocation Procedure

alloc(p) allocates a new component in the class to which the pointer variable p
is bound, and assigns the pointer designating the new component to p.
If the component type is a record type with variants, the form

altoc (p, t) can be used to allocate a component of the variant whose tag field
value is t. However, this allocation does not imply an assignment to
the tag field. If the class is already compleately allocated, the value
nil will be assigned to p.

10.1.,. Data Transfer Procedures

Assuming that a is a character array variable, z is an alfa variable, and i is
an integer expression, then

pack (a, i, z) packs the n characters a [iJ ... a [i +n -1J into the alfa variable z
(for n cf. 6.1.1.), and

unpack (z, a, i) unpacks the alfa value z into the variables a [iJ ... a [i +n -1J.

11. Function Declarations

Function declarations serve to define parts of the program which compute a
scalar value or a pointer value. Functions are activated by the evaluation of a
function designator (d. 8.2) which is a constituent of an expression. A function
declaration consists of the following parts, any of which, except the first and
the last, may be empty (d. also 10.).

(function declaration) :: =
(function heading)
(constant definition part) (type definition part)
(variable declaration part)
(procedure and function declaration part) (statement part)

The function heading specifies the identifier naming the function, the formal
parameters of the function (note that there must be at least one parameter),
and the type of the (result of the) function.

(function heading:: = function (identifier) (formal parameter section)
{; (formal parameter section) }*) : (result type) ;

(result type) ::= (type identifier)

www.manaraa.com

539

The type of the function must be a scalar or a subrange type or a pointer type.
Within the function declaration there must be at least one assignment statement
assigning a value to the function identifier. This assignment determines the
result of the function. Occurrence of the function identifier in a function designator
within its declaration implies recursive execution of the function. Within the
statement part no assignment must occur to any variable which is not local to
the function. This rule also excludes assignments to parameters.

Examples:

fundion Sqrt(x: real): real;
var xO, xl: real;

begin x1:= x; {x> 1, Newton's method}
repeat xO:= xl; x1:= (xO+xlxO)*0.5

{xO' -2*x1*xO + x = O}
until abs (xl - xO) ;:;;;; eps;
{(xO -eps) ~ xl;:;;;; (xO + eps) ,
(x - 2*eps* xO) ;:;;;; x02 ~ (x + 2*eps* xO) }
Sqrt:= xO

end

fundion Max (a: vector; n: integer): real;
var x: real; i: integer;

begin x:= a[1];
for i : = 2 to n do
begin {x = max (lZt •.• ai-I) }

if x< a [i] then x:= a [i]
{ x = max (lZt ••. ai)}

end;
{ x = max (lZt •.. an)}
Max:=x

end

fundion GCD (m, n: integer): integer;
begin if n = ° then GCD : = m else GCD : = GCD (n, m mod n)
end

fundion Power (x: real; y: integer): real; {y ~ O}
var w, z: real; i: integer;

beginw:=x; z:=1; i:=y;
while i *0 do
begin {z*wi= x"}

if odd (i) then z:= z*w;
i :=idiv2; {Z*W2i =X"}
w:=sqr(w) {z*wi=x"}

end;
{i=O, z=x"}
Power:=z

end

www.manaraa.com

540

11.1. Standard Functions
Standard functions are supposed to be predeclared in every implementation

of Pascal. Any implementation may feature additional predeclared functions
(d. also 10.1.).

The standard functions are listed and explained below:

11.1.1. Arithmetic Functions
abs (x) computes the absolute value of %. The type of x must be either real

or integer, and the type of the result is the type of %.

sqr(x)

sin (x)
cos (x)
exp(x)
In (x)
sqrl~
arctan (x)

computes Xl. The type of % must be either real or integer, and the
type of the result is the type of %.

the type of x must be either real or integer, and the type of the result
is real

11.1.2. Predicates
odd (%) the type of x must be integer, and the result is x mod 2 = 1
eo/(/) indicates, whether the file / is in the end-of-file status.

11.1.,. Transfer Functions
trune (x) x must be of type real, and the result is of type integer,

such that abs (x) -1 < trune (abs (%)) ~ abs (x)
int(x) x must be of type char, and the result (of type integer) is the ordinal

number of the character % in the defined character set.
chr(x) x must be of type integer, and the result (of type char) is the character

whose ordinal number is x.

11.1.4. Further Standard Functions
succ(x) x is of any scalar or subrange type, and the result is the successor

value of x (if it exists).
pretl(x) x is of any scalar or subrange type, and the result is the predecessor

value of x (if it exists).

12. Programs

A Pascal program has the form of a procedure declaration without heading
(d. also 7.4.).

(program) ::= (constant definition part) (type definition part)
(variable declaration part)
(procedure and function declaration part) (statement part).

www.manaraa.com

541

13. Pascal 6000

The version of the language Pascal which is processed by its implementation
on the CDC 6000 series of computers is described by a number of amendments
to the preceding Pascal language definition. The amendments specify extensions
and restrictions and give precise definitions of certain standard data types. The
section numbers used hereafter refer to the corresponding sections of the language
definition.

3. Vocabulary

Only capital letters are available in the basic vocabulary of symbols. The
symbol eo. is added to the vocabulary. Symbols which consist of a sequence
of underlined letters are called word-delimiters. They are written in Pascal 6000
without underlining and without any surrounding escape characters. Blanks or
end-of-lines may be inserted anywhere except within : =, word-delimiters, iden
tifiers, and numbers. The symbol 10 is written as '.

4. Identifiers

Only the 10 first symbols of an identifier are significant. Identifiers not
differing in the 10 first symbols are considered as equal. Word-delimiters must
not be used as identifiers. At least one blank space must be inserted between
any two word-delimiters or between a word-delimiter and an adjacent identifier.

6. Data Types

6.1.1. Standard Scalar Types

integer is defined as
type integer = -~+1 .. ~-1

real is defined according to the CDC 6000 floating point format specifications.
Arithmetic operations on real type values imply rounding.

char is defined by the CDC 6000 display code character set. This set is in
cremented by the character denoted by eo., signifying end-of-line.

The ordered set is:

eo. A B C D E F G H 1

J K L M N 0 p Q R S
T U V W X Y Z 0 1 2

3 4 5 6 7 8 9 + •
I () $ - u [
] =1= { V 1\ t } < >
~ ~ ,

(Note that the characters' { } are special features on the printers of the
ETH installation, and correspond to the characters == r ~ at standard
CDC systems.)

alta the number n of characters packed into an alfa value is 10 (d. 6.1.1.).

www.manaraa.com

542

6.2.3. Powerset Types
The base type of a powerset type must be either

1. a scalar type with less than 60 values, or
2. a subrange of the type integer, with a minimum element min(T) ~O and

a maximum element max(T) < 59, or
3. a subrange of the type char with the maximum element max(T) <'>'.

6.2.4. and 6.2.5. File and Class Types
No component of any structured type can be of a file type or of a class type.

7. Variable Declarations
File variables declared in the main program may be restricted to either input

or output mode by appending the specifiers

[in] or [out]

to the file identifier in its declaration. Files restricted to input mode (input files)
are expected to be Permanent Files attached to the job by the SCOPE Attach
command, and files restricted to output mode may be catalogued as Permanent
Files by the SCOPE Catalog command. In both commands, the file identifier is
to be used as the Logical File Name [5].

10. and 11. Procedure and Function Declarations
A procedure or a function which contains local file declarations must not be

activated recursively.

14. Glossary

actual parameter 9.1.2. field identifier 7.2.2.
adding operator 8.1.3. field list 6.2.2.
array type 6.2.1. file type 6.2.4-
array variable 7.2.1- file variable 7.2.3.
assignment statement 9.1-1- final value 9.2.3.3.
case label 6.2.2. fixed part 6.2.2.
case list element 9.2.2.2. for list 9·2.3.3.
case statement 9.2.2.2. for statement 9·2.3·3.
class type 6.2.5. formal parameter
class variable 6.2.6. section 10.
component statement 9.2.1. function declaration it.
component type 6.2.1. function designator 8.2.
component variable 7.2. function heading H.
compound statement 9.2.1. function identifier 8.2.
conditional statement 9.2.2. goto statement 9.1.3.
constant 5. identifier 4.
constant definition 5. if statement 9.2.2.1.
constant definition part to. index type 6.2.1.
control variable 9.2.3.3. indexed variable 7.2.1-
current file component 7.2.3. initial value 9·2.3.3.
digit 3. integer 4.
entire variable 7.1- label 9·1.3.
expression 8. label definition 9·2.1.
factor 8. letter 3.
field designator 7.2.2. letter or digit 4.

www.manaraa.com

maxnum
multiplying operator
number
parameter group
pointer type
pointer variable
powerset type
procedure and function

declaration part
procedure declaration
procedure heading
procedureidentUler
procedure or function

declaration
procedure statement
program
real number
record section
record type
record variable
referenced component
relational operator
repeat statement
repetitive statement
result type

6.2.5.
8.1.2.
4.
10.
6.2.6.
7.2.4.
6.2.3.

10.
10.
10.
9.1.2.

to.
9.1.2.
12.
4.
6.2.2.
6.2.2.
7.2.2.
7.2.4.
8.1.4.
9·2.3.2.
9.2.3.
H.

543

scalar type
scale factor
set
sign
simple expression
simple statement
special symbol
statement
statement part
structured statement
tag field
term
type
type definition
type definition part
type identifier
unsigned constant
variable
variable declaration
variable declaration part
variable identifier
variant
variant part
with statement
while statement

6.1.
4.
8.
4.
8.
9.1-
3.
9.
10.
9.2.
6.2.2.
8.
6.
6.
10.
6.
S.
7.
7.
10.
7.1.
6.2.2.
6.2.2.
9.2.4.
9·2.3.1.

The author gratefully acknowledges his indeptedness to C. A. R. Hoare for his many
valuable suggestions concerning overall design strategy as well as details. and for his
critical scrutiny of this paper.

References
1. Naur. P.: Report on the algorithmic language ALGOL 60. Comm ACM 3. 299-314

(1960).
2. Report on Subset ALGOL 60 (IFIP): Comm. ACM 7. 62£r628 (1964).
3. Wirth. N .• Hoare. C. A. R.: A contribution to the development of ALGOL. Comm.

ACM 9. 413-432 (1966).
4. Knuth, D. E.: The art of computer programming. Vol. 1. Addison-Wesley 1968.
S. Control Data 6000 Computer Systems. SCOPE Reference Manual. Pub. No.

60189400.

Prof. Dr. N. Wirth
Eidgenossische Technische Hochschule
Fachgruppe Computer-Wissenschaften
ClausiusstraBe S5
CH-8006 Ziirich
Schweiz

www.manaraa.com

Niklaus Wirth
Program Development by Stepwise Refinement

Communications of the ACM, Vol. 14 (4), 1971
pp.221-227

www.manaraa.com

Program
Development by
Stepwise
Refinement
Niklaus Wirth
Eidgenossische Technische Hochschule
Zurich, Switzerland

The creative activity of programming-to be distinguished
from coding-is usually taught by examples serving to
exhibit certain techniques. It is here considered as a
sequence of design decisions concerning the
decomposition of tasks into subtasks and of data into
data structures. The process of successive refinement of
specifications is illustrated by a short but nontrivial
example, from which a number of conclusions are drawn
regarding the art and the instruction of programming.

Key Words and Phrases: education in programming,
programming techniques, stepwise program construction

CR Categories: 1.50, 4.0

1. Introduction

Programming is usually taught by examples. Experi
ence shows that the success of a programming course
critically depends on the choice of these examples. Un
fortunately, they are too often selected with the prime
intent to demonstrate what a computer can do. Instead,
a main criterion for selection should be their suitability

www.manaraa.com

548

to exhibit certain widely applicable techniques. Further
more, examples of programs are commonly presented as
finished "products" followed by explanations of their
purpose and their linguistic details. But active program
ming consists of the design of new programs, rather than
contemplation of old programs. As a consequence of
these teaching methods, the student obtains the impres
sion that programming consists mainly of mastering a
language (with all the peculiarities and intricacies so
abundant in modern PL's) and relying on one's intuition
to somehow transform ideas into finished programs.
Clearly, programming courses should teach methods of
design and construction, and the selected examples
should be such that a gradual development can be nicely
demonstrated.

This paper deals with a single example chosen with
these two purposes in mind. Some well-known tech
niques are briefly demonstrated and motivated (strategy
of preselection, stepwise construction of trial solutions,
introduction of auxiliary data, recursion), and the pro
gram is gradually developed in a sequence of refinement
steps.

In each step, one or several instructions of the given
program are decomposed into more detailed instruc
tions. This successive decomposition or refinement of
specifications terminates when all instructions are ex
pressed in terms of an underlying computer or program
ming language, and must therefore be guided by the
facilities available on that computer or language. The re
sult of the execution of a program is expressed in terms
of data, and it may be necessary to introduce further
data for communication between the obtained subtasks
or instructions. As tasks are refined, so the data may

www.manaraa.com

549

have to be refined, decomposed, or structured, and it is
natural to refine program and data specifications in
parallel.

Every refinement step implies some design decisions.
It is important that these decision be made explicit, and
that the programmer be aware of the underlying criteria
and of the existence of alternative solutions. The pos
sible solutions to a given problem emerge as the leaves of
a tree, each node representing a point of deliberation
and decision. Subtrees may be considered as families of
solutions with certain common characteristics and struc
tures. The notion of such a tree may be particularly
helpful in the situation of changing purpose and environ
ment to which a program may sometime have to be
adapted.

A guideline in the process of stepwise refinement
should be the principle to decompose decisions as much
as possible, to untangle aspects which are only seemingly
interdependent, and to defer those decisions which con
cern details of representation as long as possible. This
will result in programs which are easier to adapt to dif
ferent environments (languages and computers), where
different representations may be required.

The chosen sample problem is formulated at the be
ginning of section 3. The reader is strongly urged to try
to find a solution by himself before embarking on the
paper which-of course-presents only one of many
possible solutions.

2. Notation

For the description of programs, a slightly augmen
ted Algol 60 notation will be used. In order to express

www.manaraa.com

550

repetition of statements in a more lucid way than by use
of labels and jumps, a statement of the form

repeat (statement sequence)
until (Boolean expression)

is introduced, meaning that the statement sequence is to
be repeated until the Boolean expression has obtained
the value true.

3. The 8-Queens Problem and an Approach to Its
Solutionl

Given are an 8 X 8 chessboard and 8 queens which are hostile
to each other. Find a position for each queen (a configuration) such
that no queen may be taken by any other queen (i.e. such that every
row, column, and diagonal contains at most one queen).

This problem is characteristic for the rather frequent
situation where an analytical solution is not known,
and where one has to resort to the method of trial and
error. Typically, there exists a set A of candidates for
solutions, among which one is to be selected which
satisfies a certain condition p. Thus a solution is char
acterized as an x such that (x E A) A p(x).

A straightforward program to find a solution is:

repeat Generate the next element of A and call it x
until p(x) V (no more elements in A);
if p(x) then x = solution

The difficulty with this sort of problem usually is the
sheer size of A, which forbids an exhaustive generation
of candidates on the grounds of efficiency considera-

1 This problem was investigated by C. F. Gauss in 1850.

www.manaraa.com

551

tions. In the present example, A consists of
641/(561 X 81) ...:. 232 elements (board configura
tions). Under the assumption thaL generation and
test of each configuration consumes 100 J,LS, it
would roughly take 7 hours to find a solution. It is
obviously necessary to invent a "shortcut," a method
which eliminates a large number of "obviously" dis
qualified contenders. This strategy of preselection is
characterized as follows: Find a representation
of p in the form p = q /\ r. Then let Br =
{x I (x E A) /\ r(x)}. Obviously Br C A. Instead of
generating elements of A, only elements of B are pro
duced and tested on condition q instead of p. Suitable
candidates for a condition r are those which satisfy
the following requirements:

1. Br is much smaller than A.
2. Elements of Br are easily generated.
3. Condition q is easier to test than condition p.

The corresponding program then is:

repeat Generate the next element of B and call it x
until q(x) V (no more elements in B);
if q(x) then x = solution

A suitable condition r in the 8-queens problem is the
rule that in every column of the board there must be
exactly one queen. Condition q then· merely specifies
that there be at most one queen in every row and in
every diagonal, which is evidently somewhat easier
to test than p. The set Br (configurations with one queen
in every column) contains "only" 88 = 224 elements.
They are generated by restricting the movement of
queens to columns. Thus all of the above conditions
are satisfied.

www.manaraa.com

552

Assuming again a time of 100 p's for the generation
and test of a potential solution, finding a solution
would now consume only 100 seconds. Having a power
ful computer at one's disposal, one might easily be
content with this gain in performance. If one is less
fortunate and is forced to, say, solve the problem by
hand, it would take 280 hours of generating and testing
configurations at the rate of one per second. In this
case it might pay to spend some time finding further
shortcuts. Instead of applying the same method as
before, another one is advocated here which is char
acterized as follows: Find a representation of trial
solutions x of the form [Xl, X2, ••. , .xn], such that
every trial solution can be generated in steps which
produce [Xl], [Xl, X2], ••• , [Xl, X2 , ••• , .xn] respec
tively. The decomposition must be such that:

1. Every step (generating Xi) must be considerably
simpler to compute than the entire candidate x.

2. q(x) ::;) q(Xl ... Xj) for all j < n.

Thus a full solution can never be obtained by extend
ing a partial trial solution which does not satisfy
the predicate q. On the other hand, however, a partial
trial solution satisfying q may not be extensible into a
complete solution. This method of stepwise construc
tion of trial solutions therefore requires that trial solu
tions failing at step j may have to be "shortened"
again in order to try different extensions. This technique
is called backtracking and may generally be character
ized by the program:
j := 1;
repeat tr)'Step j;

if successful then advance else regress
until U < 1) V U > n)

www.manaraa.com

553

In the 8-queens example, a solution can be con
structed by positioning queens in successive columns
starting with column I and adding a queen in the next
column in each step. Obviously, a partial configuration
not satisfying the mutual nonaggression condition may
never be extended by this method into a full solution.
Also, since during the jth step only j queens have to be
considered and tested for mutual nonaggression, finding
a partial solution at step j requires less effort of inspec
tion than finding a complete solution under the condi
tion that all 8 queens are on the board all the time. Both
stated criteria are therefore satisfied by the decomposi
tion in which step j consists of finding a safe position for
the queen in the jth column.

The program subsequently to be developed is based
on this method; it generates and tests 876 partial con
figurations before finding a complete solution. Assuming
again that each generation and test (which is now more
easily accomplished than before) consumes one second,
the solution is found in 15 minutes, and with the com
puter taking 100 f.'s per step, in 0.09 seconds.

4. Development of the Program

We now formulate the stepwise generation of partial
solutions to the 8-queens problem by the following first
version of a program:

variable board, pointer, safej
considerfirsteolumnj
repeattryeolumnj

if safe then
begin setqueenj eonsidernexteolumn
end else regress

until lasteoldone V regressoutoffirsteol

www.manaraa.com

554

This program is composed of a set of more primitive in
structions (or procedures) whose actions may be de
scribed as follows:

considerfirstcolumn. The problem essentially consists of inspect
ing the safety of squares. A pointer variable designates the currently
inspected square. The column in which this square lies is called the
currently inspected column. This procedure initializes the pointer to
denote the first column.

trycolumn. Starting at the current square of inspection in the
currently considered column, move down the column either until a
safe square is found, in which case the Boolean variable safe is set
to true, or until the last square is reached and is also unsafe, in
which case the variable safe is set to false.

setqueen. A queen is positioned onto the last inspected square.
considernextcolumn. Advance to the next column and initialize

its pointer of inspection.
regress. Regress to a column where it is possible to move the

positioned queen further down, and remove the queens positioned
in the columns over which regression takes place. (Note that we
may have to regress over at most two columns. Why?)

The next step of program development was chosen to
refine the descriptions of the instructions trycolumn and
regress as follows:
procedure trycolumn;
repeat advancepointer; testsquare
until iafe V lastsquare

procedure regress;
begin reconsiderpriorcolumn

if - regressoutoJfirstcol then
begin removequeen;

if lastsquare then
begin reconsiderpriorcolumn;

if ..., regressoutoJfirstcol then
removequeen

end
end

end

www.manaraa.com

555

The program is expressed in terms of the instructions:

considerfirstcolumn
considernextcolumn
reconsiderpriorcolumn
advaneepointer
testsquare (sets the variable safe)
setqueen
removequeen

and of the predicates:

lastsquare
lasteoldone
re gressoutoffirstcol

In order to refine these instructions and predicates fur
ther in the direction of instructions and predicates avail
able in common programming languages, it becomes
necessary to express them in terms of data representable
in those languages. A decision on how to represent the
relevant facts in terms of data can therefore no longer be
postponed. First priority in decision making is given to
the problem of how to represent the positions of the
queens and of the square being currently inspected.

The most straightforward solution (Le. the one most
closely reflecting a wooden chessboard occupied by mar
ble pieces) is to introduce a Boolean square matrix with
B[i,j] = true denoting that square (i,j) is occupied. The
success of an algorithm, however, depends almost al
ways on a suitable choice of its data representation in
the light of the ease in which this representation allows
the necessary operations to be expressed. Apart from
this, consideration regarding storage requirements may
be of prime importance (although hardly in this case).
A common difficulty in program design lies in the unfor-

www.manaraa.com

556

tunate fact that at the stage where decisions about data
representations have to be made, it often is still difficult
to foresee the details of the necessary instructions oper
ating on the data, and often quite impossible to estimate
the advantages of one possible representation over
another. In general, it is therefore advisable to delay de
cisions about data representation as long as possible
(but not until it becomes obvious that no realizable so
lution will suit the chosen algorithm).

In the problem presented here, it is fairly evident
even at this stage that the following choice is more
suitable than a Boolean matrix in terms of simplicity
of later instructions as well as of storage economy.

j is the index of the currently inspected column;
(x i ,j) is the coordinate of the last inspected square;
and the position of the queen in column k < j is given
by the coordinate pair (Xk , k) of the board. Now the
variable declarations for pointer and board are refined
into:

integer j (0 < j < 9)
integer array x[I :8] (0 < Xi < 8)

and the further refinements of some of the above instruc
tions and predicates are expressed as:

procedure considerfirstcolumn;
begin j: = I j X [1] : = 0 end

procedure considernexlcolumn;
begin- j : = j+Ij xU]:= 0 end

procedure reconsiderpriorcolumnj j : = j-l

procedure advance pointer;
x[j] : = x[j] + I

Boolean procedure lastsquare;
lastsquare : = xU] = 8

www.manaraa.com

Boolean procedure lasteoldone;
lasteoldone : = j > 8

557

Boolean procedure re gressouto./firsteol;
regressouto./firsteol : = j < 1

At this stage, the program is expressed in terms of the
instructions:

testsquare
setqueell
removequeen

As a matter of fact, the instructions setqueen and
removequeen may be regarded as vacuous, if we decide
that the procedure testsquare is to determine the
value of the variable safe solely on the grounds of the
values Xl .•. Xj-l which completely represent the po
sitions of the j - 1 queens so far on the board. But
unfortunately the instruction testsquare is the one
most frequently executed, and it is therefore the one
instruction where considerations of efficiency are not
only justified but essential for a good solution of the
problem. Evidently a version of testsquare expressed
only in terms of Xl ••. Xj-l is inefficient at best. It
should be obvious that testsquare is executed far more
often than setqueen and removequeen. The latter pro
cedures are executed whenever the column (j) is changed
(say m times), the former whenever a move to the next
square is undertakeil (Le. Xj is changed., say n times).
However, setqueen and removequeen are the only
procedures which affect the chessboard. Efficiency
may therefore be gained by the method of introducing
auxiliary variables V(XI··· Xj) such that:

1. Whether a square is safe can be computed more
easily from V(x) than from X directly (say in u

www.manaraa.com

558

units of computation instead of ku units of com
putation).

2. The computation of Vex) from x (whenever x
changes) is not too complicated (say of v units of
computation).

The introduction of V is advantageous (apart from
considerations of storage economy), if

n(k - l)u > mu
n v

or - (k - 1) > - ,
m u

i.e. if the gain is greater than the loss in computation
units.

A most straightforward solution to obtain a simple
version of testsquare is to introduce a Boolean matrix
B such that B[i, j] = true signifies that square (i, j)
is not taken by another queen. But unfortunately, its
recomputation whenever a new queen is removed (v)
is prohibitive (why?) and will more than outweigh
the gain.

The realization that the relevant condition for safety
of a square is that the square must lie neither in a
row nor in a diagonal already occupied by another
queen, leads to a much more economic choice of V.
We introduce Boolean arrays a, b, c with the meanings:

ak = true : no queen is positioned in row k
bk = true : no queen is positioned in the / -diagonal k
Ck = true : no queen is positioned in the \ -diagonal k

The choice of the index ranges of these arrays is made
in view of the fact that squares with equal sum of
their coordinates lie on the same / -diagonal, and
those with equal difference lie on the same \-diagonal.

www.manaraa.com

559

With row and column indices from 1 to 8, we obtain:

Boolean array afl :8], b[2: 16], c[-7:7]

Upon every introduction of auxiliary data, care has
to be taken of their correct initialization. Since our
algorithm starts with an empty chessboard, this fact
must be represented by initially assigning the value
true to all components of the arrays a, b, and-c. We
can now write:

procedure testsquare; •
safe: = a[xU]] /\ bU+x[j]] /\ c[j-xfj]]

procedure setqueen;
a[xfjll := b[j+x[j]] := x[j-xfj]] := false

procedure removequeen;
a[x[j1J := b[j+xUJJ := c[j-x[j]] := true

The correctness of the latter procedure is based on the
fact that each queen currently on the board had been
positioned on a safe square, and that all queens posi
tioned after the one to be removed now had already
been removed. Thus the square to be vacated be
comes safe again.

A critical examination of the program obtained so
far reveals that the variable xU] occurs very often, and
is not taken by another queen. But unfortunately, its
recomputation whenever a new queen is removed (v)
is prohibitive (why?) and will more than outweigh
the gain.

The realization that the relevant condition for safety
of a square is that the square must lie neither in a
row nor in a diagonal already occupied by another
queen, leads to a much more economic choice of V.
We introduce Boolean arrays a, b, c with the meanings:

www.manaraa.com

560

ak = true: no queen is positioned in row k
bk = true: no queen is positioned in the / -diagonal k
Ck = true : no queen is positioned in the \ -diagonal k

The choice of the index ranges of these arrays is made
in view of the fact that squares with equal sum of
their coordinates lie on the same / -diagonal, and
those with equal difference lie on the same \ -diagonal.
With row and column indices from 1 to 8, we obtain:

Boolean array a[l :8], b[2: 16], c[-7 :7]

Upon every introduction of auxiliary data, care has
to be taken of their correct initialization. Since our
algorithm starts with an empty chessboard, this fact
must be represented by initially assigning the value
true to all components of the arrays a, b, and c. We
can now write:

procedure testsquare;
safe : = a[xU]] /\ bU+xU]] /\ cU-xfj]]

procedure setqueen;
a[xfjJ] := bU+x[jJ] := x[j-xfjJ] := false

procedure removequeen;
a[x[jJ] := bU+xUJ] := cU-x[jJ] := true

The correctness of the latter procedure is based on the
fact that each queen currently on the board had been
positioned on a safe square, and that all queens posi
tioned after the one to be removed now had already
been removed. Thus the square to be vacated be
comes safe again.

A critical examination of the program obtained so
far reveals that the variable xU] occurs very often, and
in particular at those places of the program which are
also executed most often. Moreover, examination of

www.manaraa.com

561

xU] occurs much more frequently than reassignment of
values to j. As a consequence, the principle of introduc
tion of auxiliary data can again be applied to increase
efficiency: a new variable

integer i

is used to represent the value so far denoted by xU].
Consequently xU] : = i must always be executed before
j is increased, 'and i : = xU] after j is decreased. This
final step of program development leads to the re
formulation of some of the above procedures as follows:

procedure testsquarej
safe := ali] A b[i+j] A c[i-j]

procedure setqueenj
ali] : = b[i+j] : = c[l-j] : = false

procedure removequeen j
ali] := b[i+j) := c[i-j) := true

procedure considerfirstcolumn j
begin j : = 1 j i: = 0 end

procedure advancepointerj i: = i+ 1
procedure considernextcolumnj

begin xU] : = i; j: = j+ 1; i: = 0 end
Boolean procedure lastsquare;

lastsquare : = i = 8

The final pro gram, using the procedures

testsquare
setqueen
regress
removequeen

and with the other procedures directly substituted, now
has the form

j := 1; i:= 0;
repeat

repeat i : = i+ 1; testsquare

www.manaraa.com

until safe V (i = 8);
if safe then

562

begin setqueen; xU]:= i; j:= j+l; i:= 0
end else regress

until U > 8) V (j < 1);
if j > 8 then PRINT(x) else FAILURE

It is noteworthy that this program still displays the
structure of the version designed in the first step. Natu
rally other, equally valid solutions can be suggested and
be developed by the same method of stepwise program
refinement. It is particularly essential to demonstrate this
fact to students. One alternative solution was suggested
to the author by E. W. Dijkstra. It is based on the view
that the problem consists of a stepwise extension of the
board by one column containing a safely positioned
queen, starting with a null-board and terminating with
8 columns. The process of extending the board is formu
lated as a procedure, and the natural method to obtain
a complete board is by recursion of this procedure. It can
easily be composed of the same set of more primitive
instructions which were used in the first solution.

procedure Trycolumn(j);
begin integer i; i: = 0;

repeat i : = i + 1 ; testsquare;
if safe then
begin setqueen; xU]: = i;

if j < 8 then Trycolumn U+ 1);
if, safe then removequeen

end
until safe V (i= 8)

end

The pro gram using this procedure then is

Trycolumn(1) ;
if safe then PRINT(x) else FAILURE

www.manaraa.com

563

(Note that due to the introduction of the variable i local
to the recursive procedure, every column has its own
pointer of inspection i. As a consequence, the proce
dures

testsquare
setqueen
removequeen

must be declared locally within Trycolumn too, because
they refer to the i designating the scanned square in the
current column.)

5. The Generalized 8·Queens Problem

In the practical world of computing, it is rather un
common that a program, once it performs correctly and
satisfactorily, remains unchanged forever. Usually its
users discover sooner or later that their program does
not deliver all the desired results, or worse, that the re
sults requested were not the ones really needed. Then
either an extension or a change of the program is called
for, and it is in this case where the method of stepwise
program design and systematic structuring is most valu
able and advantageous. If the structure and the program
components were well chosen, then often many of the
constituent instructions can be adopted unchanged.
Thereby the effort of redesign and reverification may be
drastically reduced. As a matter of fact, the adaptability
of a program to changes in its objectives (often called
maintainability) and to changes in its environment
(nowadays called portability) can be measured primarily
in terms of the degree to which it is neatly structured.

www.manaraa.com

564

It is the purpose of the subsequent section to demon
strate this advantage in view of a generalization of the
original 8-queens problem and its solution through an
extension of the program components introduced be
fore.

The generalized problem is formulated as follows:

Find all possible configurations of 8 hostile queens on an 8 X 8
chessboard, stiCh that no queen may be taken by any other queen.

The new problem essentially consists of two parts:

I. Finding a method to generate further solutions.
2. Determining whether all solutions were generated

or not.

It is evidently necessary to generate and test candi
dates for solutions in some systematic manner. A
common technique is to find an ordering of candidates
and a condition to identify the last candidate. If an
ordering is found, the solutions can be mapped onto
the integers. A condition limiting the numeric values
associated with the solutions then yields a criterion for
termination of the algorithm, if the chosen method
generates solutions strictly in increasing order.

It is easy to find orderings of solutions for the present
problem. We choose for convenience the mapping

8

M(x) = L xjlOi-1

j=1

An upper bound for possible solutions is then

M(xmax) = 88888888

and the "convenience" lies in the circumstance that our
earlier program generating one solution generates the

www.manaraa.com

565

minimum solution which can be regarded as the starting
point from which to proceed to the next solution. This is
due to the chosen method of testing squares strictly pro
ceeding in increasing order of M(x) starting with
00000000. The method for generating further solutions
lIUlSt now be c.hosen such that starting with the configu
ration of a given solution, scanning proceeds in the same
order of increasing M, until either the next higher solu
tion is found or the' limit is reached.

6. The Extended Program

The technique of extending the two given programs
finding a solution to the simple 8-queens problem is
based on the idea of modification of the global structure
only, and of using the same building blocks. The global
structure must be changed such that upon finding a solu
tion the algorithm will produce an appropriate indica
tion-e.g. by printing the solution-and then proceed to
find the next solution until it is found or the limit is
reached. A simple condition for reaching the limit is the
event when the first queen is moved beyond row 8, in
which case regression out of the first column will take
place. These deliberations lead to the following modified
version of the non recursive program:

considerfirstcolumn j
repeattrycolumnj

if safo then
begin setqueenj considernextcolumnj

if lastcoldone then
begin PRINT(x) j regress
end

end else regress
until regressoutoJfirstcol

www.manaraa.com

566

Indication of a solution being found by printing it now
occurs directly at the level of detection, i.e. before leav
ing the repetition clause. Then the algorithm proceeds
to find a next solution whereby a shortcut is used by
directly regressing to the prior column; since a solution
places one queen in each row, there is no point in further
moving the last queen within the eighth column.

The recursive program is extended with even greater
ease following the same considerations:

procedure Trycolumn(j) ;
begin integer i;

(declarations of procedures testsquare, advaneequeen,
setqueen, removequeen, lastsquare)
i:= 0;
repeat advaneequeen; festsquare;

if safe then
hegin setqueen; xU]: = i;

if -, lasteoldone then Tryeolumn(j+ 1) else PRINT (x) ;
removequeen

end
until lastsquare

end

The main pro gram starting the algorithm then consists
(apart from initialization of a, b, and c) of the single
statement Trycolumn(l).

In concluding, it should be noted that both programs
represent the same algorithm. Both determine 92 solu
tions in the same order by testing squares 15720 times.
This yields an average of 171 tests per solution; the maxi
mum is 876 tests for finding a next solution (the first
one), and the minimum is 8. (Both programs coded in
the language Pascal were executed by a CDC 6400 com
puter in less than one second.)

www.manaraa.com

567

7. Conclusions

The lessons which the described example was sup
posed to illustrate can be summarized by the following
points.

1. Program construction consists of a sequence of
refinement steps. In each step a given task is broken up
into a number of subtasks. Each refinement in the de
scription of a task may be accompanied by a refinement
of the description of the data which constitute the means
of communication between the subtasks. Refinement of
the description of program and data structures should
proceed in parallel.

2. The degree of modularity obtained in this way will
determine the ease or difficulty with which a program
can be adapted to changes or extensions of the purpose
or changes in the environment (language, computer) in
which it is executed.

3. During the process of stepwise refinement, a no
tation which is natural to the problem in hand should be
used as long as possible. The direction in which the nota
tion develops during the process of refinement is deter
mined by the language in which the program must ulti
mately be specified, i.e. with which the notation ulti
mately becomes identical. This language should there
fore allow us to express as naturally and clearly as pos
sible the structures of program and data which emerge
during the design process. At the same time, it must give
guidance in the refinement process by exhibiting those
basic features and structuring principles which are natu
ral to the machine by which programs are supposed to
be executed. It is remarkable that it would be difficult to
find a language that would meet these important require-

www.manaraa.com

568

ments to a lesser degree than the one language still used
most widely in teaching programming: Fortran.

4. Each refinement implies a number of design deci
sions based upon a set of design criteria. Among these
criteria are efficiency, storage economy, clarity, and reg
u]arity of structure. Students must be taught to be con
scious of the involved decisions and to critically examine
and to reject solutions, sometimes even if they are cor
rect as far as the result is concerned; they must learn
to weigh the various aspects of design alternatives in the
light of these criteria. In particular, they must be taught
to revoke earlier decisions, and to back up, if necessary
even to the top. Relatively short sample problems will
often suffice to illustrate this important point; it is not
necessary to construct an operating system for this
purpose.

5. The detailed elaborations on the development of
even a short program form a long story, indicating that
careful programming is not a trivial subject. If this paper
has helped to dispel the widespread belief that program
ming is easy as long as the programming language is
powerful enough and the available computer is fast
enough, then it has achieved one of its purposes.

Acknowledgments. The author gratefully acknowl
edges the helpful and stimulating influence of many dis
cussions with C.A.R. Hoare and E. W. Dijkstra.

www.manaraa.com

569

References

The following articles are listed for further reference on the subject
of programming.

1. Dijkstra, E. W. A constructive approach to the problem of
program correctness. BIT 8 (1968), 174-186.
2. Dijkstra, E. W. Notes on structured programming. EWD 249,
Technical U. Eindhoven, The Netherlands, 1969.
3. Naur, P. Programming by action clusters. BIT 9 (1969) 25{}-258.
4. Wirth, N. Programming and programming languages. Proc.
Internat. Comput. Symp., Bonn, Germany, May 1970.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

